These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28482784)

  • 41. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study.
    Palakurthi NK; Correa ZM; Augsburger JJ; Banerjee RK
    J Ocul Pharmacol Ther; 2011 Apr; 27(2):151-6. PubMed ID: 21323470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Safety evaluation of ocular drug delivery formulations: techniques and practical considerations.
    Short BG
    Toxicol Pathol; 2008 Jan; 36(1):49-62. PubMed ID: 18337221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances and limitations of drug delivery systems formulated as eye drops.
    Jumelle C; Gholizadeh S; Annabi N; Dana R
    J Control Release; 2020 May; 321():1-22. PubMed ID: 32027938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases.
    Tsung TH; Tsai YC; Lee HP; Chen YH; Lu DW
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contact lenses as drug reservoirs & delivery systems: the successes & challenges.
    ElShaer A; Ghatora B; Mustafa S; Alany RG
    Ther Deliv; 2014 Oct; 5(10):1085-100. PubMed ID: 25418268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability.
    Liu R; Liu Z; Zhang C; Zhang B
    J Pharm Sci; 2012 Oct; 101(10):3833-44. PubMed ID: 22767401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implantable sustained-release drug delivery systems: a revolution for ocular therapeutics.
    Cong YY; Fan B; Zhang ZY; Li GY
    Int Ophthalmol; 2023 Jul; 43(7):2575-2588. PubMed ID: 36715956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems.
    Yasin MN; Svirskis D; Seyfoddin A; Rupenthal ID
    J Control Release; 2014 Dec; 196():208-21. PubMed ID: 25307997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradable dextran hydrogels for protein delivery applications.
    Van Tomme SR; Hennink WE
    Expert Rev Med Devices; 2007 Mar; 4(2):147-64. PubMed ID: 17359222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective.
    Dave RS; Goostrey TC; Ziolkowska M; Czerny-Holownia S; Hoare T; Sheardown H
    J Control Release; 2021 Aug; 336():71-88. PubMed ID: 34119558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.
    Tashakori-Sabzevar F; Mohajeri SA
    Drug Dev Ind Pharm; 2015 May; 41(5):703-13. PubMed ID: 25113431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery.
    Luo LJ; Lai JY
    Acta Biomater; 2017 Feb; 49():344-357. PubMed ID: 27890728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A biodegradable ocular implant for long-term suppression of intraocular pressure.
    Ng XW; Liu KL; Veluchamy AB; Lwin NC; Wong TT; Venkatraman SS
    Drug Deliv Transl Res; 2015 Oct; 5(5):469-79. PubMed ID: 26100093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A review of biodegradable polymeric systems for oral insulin delivery.
    Luo YY; Xiong XY; Tian Y; Li ZL; Gong YC; Li YP
    Drug Deliv; 2016 Jul; 23(6):1882-91. PubMed ID: 26066036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept.
    Patel N; Thakkar V; Metalia V; Baldaniya L; Gandhi T; Gohel M
    Drug Dev Ind Pharm; 2016 Sep; 42(9):1406-23. PubMed ID: 26716613
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Topical drug delivery systems: a patent review.
    Singh Malik D; Mital N; Kaur G
    Expert Opin Ther Pat; 2016; 26(2):213-28. PubMed ID: 26651499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Drug delivery to the eye: what benefits do nanocarriers offer?
    Joseph RR; Venkatraman SS
    Nanomedicine (Lond); 2017 Mar; 12(6):683-702. PubMed ID: 28186436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies.
    Herrero-Vanrell R; Bravo-Osuna I; Andrés-Guerrero V; Vicario-de-la-Torre M; Molina-Martínez IT
    Prog Retin Eye Res; 2014 Sep; 42():27-43. PubMed ID: 24819336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanotherapies for the treatment of ocular diseases.
    Reimondez-Troitiño S; Csaba N; Alonso MJ; de la Fuente M
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):279-93. PubMed ID: 25725262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.