These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 28482870)

  • 1. Effect of the cancer specific shorter form of human 6-phosphofructo-1-kinase on the metabolism of the yeast Saccharomyces cerevisiae.
    Andrejc D; Možir A; Legiša M
    BMC Biotechnol; 2017 May; 17(1):41. PubMed ID: 28482870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kallikrein-related peptidase 6 can cleave human-muscle-type 6-phosphofructo-1-kinase into highly active shorter fragments.
    Andrejc D; Legiša M
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):602-607. PubMed ID: 29563071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational modification of 6-phosphofructo-1-kinase as an important feature of cancer metabolism.
    Šmerc A; Sodja E; Legiša M
    PLoS One; 2011 May; 6(5):e19645. PubMed ID: 21573193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae.
    Davies SE; Brindle KM
    Biochemistry; 1992 May; 31(19):4729-35. PubMed ID: 1533788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis.
    Heinisch J; Kirchrath L; Liesen T; Vogelsang K; Hollenberg CP
    Mol Microbiol; 1993 May; 8(3):559-70. PubMed ID: 8326866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of glycolysis through regulation of PFK1: old friends and recent additions.
    Mor I; Cheung EC; Vousden KH
    Cold Spring Harb Symp Quant Biol; 2011; 76():211-6. PubMed ID: 22096029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast.
    François J; Van Schaftingen E; Hers HG
    Eur J Biochem; 1986 Jan; 154(1):141-5. PubMed ID: 3002788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.
    Usenik A; Legiša M
    PLoS One; 2010 Nov; 5(11):e15447. PubMed ID: 21124851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
    Imura M; Nitta K; Iwakiri R; Matsuda F; Shimizu H; Fukusaki E
    J Biosci Bioeng; 2020 Jan; 129(1):52-58. PubMed ID: 31537452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 6-phosphofructo-1-kinase from the lipid accumulating, non-fermentative, red yeast Rhodotorula glutinis.
    Schröter A; Kopperschläger G
    FEMS Microbiol Lett; 1996 Sep; 142(2-3):247-52. PubMed ID: 8810508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving N-Acetylglucosamine Production in Saccharomyces cerevisiae.
    Lee SW; Lee BY; Oh MK
    J Agric Food Chem; 2018 Dec; 66(50):13191-13198. PubMed ID: 30463407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and biochemical characterization of phosphofructokinase from the opportunistic pathogenic yeast Candida albicans.
    Lorberg A; Kirchrath L; Ernst JF; Heinisch JJ
    Eur J Biochem; 1999 Feb; 260(1):217-26. PubMed ID: 10091602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae.
    Lloyd D; James CJ; Maitra PK
    Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of 6-phosphofructo-2-kinase from Saccharomyces cerevisiae: inhibition of the enzyme by ATP.
    Bedri A; Kretschmer M; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1989; 48(7):403-11. PubMed ID: 2529854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased mannitol production in Lactobacillus reuteri ATCC 55730 production strain with a modified 6-phosphofructo-1-kinase.
    Papagianni M; Legiša M
    J Biotechnol; 2014 Jul; 181():20-6. PubMed ID: 24742994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis.
    Costa Leite T; Da Silva D; Guimarães Coelho R; Zancan P; Sola-Penna M
    Biochem J; 2007 Nov; 408(1):123-30. PubMed ID: 17666012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae.
    Boles E; Heinisch J; Zimmermann FK
    Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-hybrid system analysis shows interactions between 6-phosphofructo-1-kinase and 6-phosphofructo-2-kinase but not between other glycolytic enzymes of the yeast Saccharomyces cerevisiae.
    Müller S; Boles E; Zimmermann FK
    Eur J Biochem; 1996 Mar; 236(2):626-31. PubMed ID: 8612638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae.
    Kwak S; Yun EJ; Lane S; Oh EJ; Kim KH; Jin YS
    Biotechnol J; 2020 Feb; 15(2):e1900173. PubMed ID: 31466140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.
    Baillet A; Hograindleur MA; El Benna J; Grichine A; Berthier S; Morel F; Paclet MH
    FASEB J; 2017 Feb; 31(2):663-673. PubMed ID: 27799347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.