These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 28483149)

  • 21. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates.
    Jo Y; Jang J; Song D; Park H; Jung Y
    Chem Sci; 2022 Jan; 13(2):522-530. PubMed ID: 35126984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins.
    Zheng W; Dignon G; Brown M; Kim YC; Mittal J
    J Phys Chem Lett; 2020 May; 11(9):3408-3415. PubMed ID: 32227994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins.
    Amin AN; Lin YH; Das S; Chan HS
    J Phys Chem B; 2020 Aug; 124(31):6709-6720. PubMed ID: 32639157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions.
    Wessén J; Das S; Pal T; Chan HS
    J Phys Chem B; 2022 Nov; 126(45):9222-9245. PubMed ID: 36343363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence-Dependent Conformational Transitions of Disordered Proteins During Condensation.
    Wang J; Devarajan DS; Kim YC; Nikoubashman A; Mittal J
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient encapsulation of proteins with random copolymers.
    Nguyen TD; Qiao B; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6578-6583. PubMed ID: 29895685
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass fractal dimension and the compactness of proteins.
    Enright MB; Leitner DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011912. PubMed ID: 15697635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-chain and condensed-state behavior of hnRNPA1 from molecular simulations.
    Bauer DJ; Stelzl LS; Nikoubashman A
    J Chem Phys; 2022 Oct; 157(15):154903. PubMed ID: 36272811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.
    Dzuricky M; Roberts S; Chilkoti A
    Biochemistry; 2018 May; 57(17):2405-2414. PubMed ID: 29683665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.
    Rozentur-Shkop E; Goobes G; Chill JH
    J Biomol NMR; 2016 Dec; 66(4):243-257. PubMed ID: 27844185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: On the Accuracy of the TIP4P-D Water Model and the Representativeness of Protein Disorder Models.
    Henriques J; Skepö M
    J Chem Theory Comput; 2016 Jul; 12(7):3407-15. PubMed ID: 27243806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase behavior of blocky charge lattice polymers: Crystals, liquids, sheets, filaments, and clusters.
    Robichaud NAS; Saika-Voivod I; Wallin S
    Phys Rev E; 2019 Nov; 100(5-1):052404. PubMed ID: 31869935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of macromolecular crowding on the charge regulation of intrinsically disordered proteins.
    Blanco PM; Madurga S; Garcés JL; Mas F; Dias RS
    Soft Matter; 2021 Jan; 17(3):655-669. PubMed ID: 33215185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay between intrinsically disordered proteins inside membraneless protein liquid droplets.
    Jo Y; Jung Y
    Chem Sci; 2019 Dec; 11(5):1269-1275. PubMed ID: 34123251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins.
    Sawle L; Ghosh K
    J Chem Phys; 2015 Aug; 143(8):085101. PubMed ID: 26328871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nematic ordering of rigid rod polyelectrolytes induced by electrostatic interactions: effect of discrete charge distribution along the chain.
    Yang D; Venev SV; Palyulin VV; Potemkin II
    J Chem Phys; 2011 Feb; 134(7):074901. PubMed ID: 21341872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes.
    Lin YH; Brady JP; Chan HS; Ghosh K
    J Chem Phys; 2020 Jan; 152(4):045102. PubMed ID: 32007034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.