These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28483382)

  • 1. Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology.
    Rinaldo A; Bertuzzo E; Blokesch M; Mari L; Gatto M
    Trends Parasitol; 2017 Aug; 33(8):587-599. PubMed ID: 28483382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Analyses on the Effects of Control Measures for a Waterborne Disease Model with Socioeconomic Conditions.
    Collins OC; Duffy KJ
    J Comput Biol; 2021 Jan; 28(1):19-32. PubMed ID: 32471315
    [No Abstract]   [Full Text] [Related]  

  • 3. Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks.
    Finger F; Genolet T; Mari L; de Magny GC; Manga NM; Rinaldo A; Bertuzzo E
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6421-6. PubMed ID: 27217564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a waterborne disease model with socioeconomic classes.
    Collins OC; Robertson SL; Govinder KS
    Math Biosci; 2015 Nov; 269():86-93. PubMed ID: 26361286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling cholera epidemics: the role of waterways, human mobility and sanitation.
    Mari L; Bertuzzo E; Righetto L; Casagrandi R; Gatto M; Rodriguez-Iturbe I; Rinaldo A
    J R Soc Interface; 2012 Feb; 9(67):376-88. PubMed ID: 21752809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of thinking beyond the water-supply in cholera epidemics: A historical urban case-study.
    Phelps MD; Azman AS; Lewnard JA; Antillón M; Simonsen L; Andreasen V; Jensen PKM; Pitzer VE
    PLoS Negl Trop Dis; 2017 Nov; 11(11):e0006103. PubMed ID: 29176791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions.
    Tuite AR; Tien J; Eisenberg M; Earn DJ; Ma J; Fisman DN
    Ann Intern Med; 2011 May; 154(9):593-601. PubMed ID: 21383314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity.
    Lee EC; Kelly MR; Ochocki BM; Akinwumi SM; Hamre KES; Tien JH; Eisenberg MC
    J Theor Biol; 2017 May; 420():68-81. PubMed ID: 28130096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the predictive ability of mechanistic models for the Haitian cholera epidemic.
    Mari L; Bertuzzo E; Finger F; Casagrandi R; Gatto M; Rinaldo A
    J R Soc Interface; 2015 Mar; 12(104):20140840. PubMed ID: 25631563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for disease dynamics of a waterborne pathogen on a random network.
    Li M; Ma J; van den Driessche P
    J Math Biol; 2015 Oct; 71(4):961-77. PubMed ID: 25326654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholera Transmission in Ouest Department of Haiti: Dynamic Modeling and the Future of the Epidemic.
    Kirpich A; Weppelmann TA; Yang Y; Ali A; Morris JG; Longini IM
    PLoS Negl Trop Dis; 2015; 9(10):e0004153. PubMed ID: 26488620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On spatially explicit models of cholera epidemics.
    Bertuzzo E; Casagrandi R; Gatto M; Rodriguez-Iturbe I; Rinaldo A
    J R Soc Interface; 2010 Feb; 7(43):321-33. PubMed ID: 19605400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.
    Eisenberg MC; Robertson SL; Tien JH
    J Theor Biol; 2013 May; 324():84-102. PubMed ID: 23333764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct transmission via households informs models of disease and intervention dynamics in cholera.
    Meszaros VA; Miller-Dickson MD; Baffour-Awuah F; Almagro-Moreno S; Ogbunugafor CB
    PLoS One; 2020; 15(3):e0229837. PubMed ID: 32163436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cholera transmission model incorporating the impact of medical resources.
    Yang CY; Wang J
    Math Biosci Eng; 2019 Jun; 16(5):5226-5246. PubMed ID: 31499710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the Epidemiology of Cholera to Prevent Disease Transmission in Developing Countries.
    Mukandavire Z; Morris JG
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemicity thresholds for water-borne and water-related diseases.
    Mari L; Casagrandi R; Rinaldo A; Gatto M
    J Theor Biol; 2018 Jun; 447():126-138. PubMed ID: 29588168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple transmission pathways and disease dynamics in a waterborne pathogen model.
    Tien JH; Earn DJ
    Bull Math Biol; 2010 Aug; 72(6):1506-33. PubMed ID: 20143271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rainfall as a driver of epidemic cholera: Comparative model assessments of the effect of intra-seasonal precipitation events.
    Lemaitre J; Pasetto D; Perez-Saez J; Sciarra C; Wamala JF; Rinaldo A
    Acta Trop; 2019 Feb; 190():235-243. PubMed ID: 30465744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Perspective on the Global Pandemic of Waterborne Disease.
    Ford TE; Hamner S
    Microb Ecol; 2018 Jul; 76(1):2-8. PubMed ID: 26022715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.