These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28483421)

  • 21. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational fluid dynamic simulations of temperature, cryoconcentration, and stress time during large-scale freezing and thawing of monoclonal antibody solutions.
    Bluemel O; Pavlišič A; Likozar B; Rodrigues MA; Geraldes V; Bechtold-Peters K; Friess W
    Eur J Pharm Biopharm; 2022 Aug; 177():107-112. PubMed ID: 35764219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular ice phase transitions in insects.
    Hawes TC
    Cryo Letters; 2014; 35(5):395-9. PubMed ID: 25397954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability - part 2: Aggregate formation and oxidation.
    Bluemel O; Buecheler JW; Hauptmann A; Hoelzl G; Bechtold-Peters K; Friess W
    Int J Pharm X; 2022 Dec; 4():100109. PubMed ID: 35024604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Antifreeze Peptide Pretreatment on Ice Crystal Size, Drip Loss, Texture, and Volatile Compounds of Frozen Carrots.
    Kong CH; Hamid N; Liu T; Sarojini V
    J Agric Food Chem; 2016 Jun; 64(21):4327-35. PubMed ID: 27138051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Freezing Processes in Drug Substance Bottles by Ice Core Sampling.
    Peláez SS; Mahler HC; Vila PR; Huwyler J; Allmendinger A
    AAPS PharmSciTech; 2024 May; 25(5):102. PubMed ID: 38714592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage.
    Yang F; Jing D; Yu D; Xia W; Jiang Q; Xu Y; Yu P
    Food Chem; 2019 Apr; 278():452-459. PubMed ID: 30583396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions.
    Kirichek O; Soper A; Dzyuba B; Callear S; Fuller B
    PLoS One; 2015; 10(3):e0120611. PubMed ID: 25815751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of freezing temperature on the color of frozen salmon.
    Ottestad S; Enersen G; Wold JP
    J Food Sci; 2011 Sep; 76(7):S423-7. PubMed ID: 22417560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated process analytical technology (PAT) approach to monitoring the effect of supercooling on lyophilization product and process parameters of model monoclonal antibody formulations.
    Awotwe Otoo D; Agarabi C; Khan MA
    J Pharm Sci; 2014 Jul; 103(7):2042-2052. PubMed ID: 24840395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theoretical model for ice primary nucleation induced by acoustic cavitation.
    Saclier M; Peczalski R; Andrieu J
    Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can controlled ice nucleation improve freeze-drying of highly-concentrated protein formulations?
    Geidobler R; Konrad I; Winter G
    J Pharm Sci; 2013 Nov; 102(11):3915-9. PubMed ID: 23963664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterns in quench-frozen, freeze-dried, blood proteins.
    Talstad I; Dalen H; Scheie P; Røli J
    Scan Electron Microsc; 1981; (Pt 2):319-26. PubMed ID: 6172844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of partial unfolding of proteins at the ice/freeze-concentrate interface by infrared microscopy.
    Schwegman JJ; Carpenter JF; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3239-46. PubMed ID: 19544369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman scattering evidence of hydrohalite formation on frozen yeast cells.
    Okotrub KA; Surovtsev NV
    Cryobiology; 2013 Feb; 66(1):47-51. PubMed ID: 23165247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.