These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 28483566)
21. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction. Wang S; Li M; Guo L; Cao Z; Fei Y Comput Biol Chem; 2019 Aug; 81():9-15. PubMed ID: 31472418 [TBL] [Abstract][Full Text] [Related]
22. The first succinylome profile of Trichophyton rubrum reveals lysine succinylation on proteins involved in various key cellular processes. Xu X; Liu T; Yang J; Chen L; Liu B; Wei C; Wang L; Jin Q BMC Genomics; 2017 Aug; 18(1):577. PubMed ID: 28778155 [TBL] [Abstract][Full Text] [Related]
23. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC. Ju Z; Cao JZ; Gu H J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214 [TBL] [Abstract][Full Text] [Related]
24. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688 [TBL] [Abstract][Full Text] [Related]
25. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features. Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790 [TBL] [Abstract][Full Text] [Related]
26. pSuc-PseRat: Predicting Lysine Succinylation in Proteins by Exploiting the Ratios of Sequence Coupling and Properties. Ai H; Wu R; Zhang L; Wu X; Ma J; Hu H; Huang L; Chen W; Zhao J; Liu H J Comput Biol; 2017 Oct; 24(10):1050-1059. PubMed ID: 28682641 [TBL] [Abstract][Full Text] [Related]
27. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Hasan MM; Yang S; Zhou Y; Mollah MN Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209 [TBL] [Abstract][Full Text] [Related]
28. Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features. Chen QY; Tang J; Du PF Mol Biosyst; 2017 May; 13(5):874-882. PubMed ID: 28396891 [TBL] [Abstract][Full Text] [Related]
29. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463 [TBL] [Abstract][Full Text] [Related]
30. Prediction of B-cell epitopes using evolutionary information and propensity scales. Lin SY; Cheng CW; Su EC BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S10. PubMed ID: 23484214 [TBL] [Abstract][Full Text] [Related]
31. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance. Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767 [TBL] [Abstract][Full Text] [Related]
32. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites. Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243 [TBL] [Abstract][Full Text] [Related]
33. PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Singh V; Sharma A; Dehzangi A; Tsunoda T Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33260770 [TBL] [Abstract][Full Text] [Related]
35. Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling. Zhu Y; Jia C; Li F; Song J Anal Biochem; 2020 Mar; 593():113592. PubMed ID: 31968210 [TBL] [Abstract][Full Text] [Related]
36. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084 [TBL] [Abstract][Full Text] [Related]
37. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences. Zhao X; Ma Z; Yin M Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447 [TBL] [Abstract][Full Text] [Related]
38. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net. Liu Y; Yu Z; Chen C; Han Y; Yu B Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274 [TBL] [Abstract][Full Text] [Related]
39. Prediction of protein modification sites of gamma-carboxylation using position specific scoring matrices based evolutionary information. Gao J; Zhang N; Ruan J Comput Biol Chem; 2013 Dec; 47():215-20. PubMed ID: 24184705 [TBL] [Abstract][Full Text] [Related]
40. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Hasan MM; Guo D; Kurata H Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]