These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 2848375)

  • 1. Ontogenesis of two genuine marker enzymes of primary sensory neurons in the rat.
    Gyulai F
    Z Mikrosk Anat Forsch; 1988; 102(3):423-31. PubMed ID: 2848375
    [No Abstract]   [Full Text] [Related]  

  • 2. Transganglionic regulation of primary sensory neurons.
    Csillik B; Knyihár-Csillik E
    Acta Morphol Hung; 1988; 36(1-2):35-46. PubMed ID: 2469299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.
    Knyihár-Csillik E; Bezzegh A; Böti S; Csillik B
    J Histochem Cytochem; 1986 Mar; 34(3):363-71. PubMed ID: 3005391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative electron histochemistry of thiamine monophosphatase and substance P in the upper dorsal horn.
    Csillik B; Knyihár-Csillik E; Bezzegh A
    Acta Histochem; 1986; 80(1):125-34. PubMed ID: 2432748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the distribution of thiamine monophosphatase, fluoride-resistant acid phosphatase, and substance P in the spinal cord with a personal computer compatible program.
    Szabó BK; Török A; Knyihár-Csillik E; Csillik B
    Acta Histochem; 1989; 87(2):123-9. PubMed ID: 2483294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities for histochemical demonstration of certain enzymes in the central nervous system with special reference to the spinal cord. II. Phosphatases.
    Davidoff M
    Nauchni Tr Vissh Med Inst Sofiia; 1969; 48(4):23-35. PubMed ID: 4318437
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbonic anhydrase activity in first-order sensory neurons of the rat.
    Wong V; Barrett CP; Donati EJ; Eng LF; Guth L
    J Histochem Cytochem; 1983 Feb; 31(2):293-300. PubMed ID: 6403607
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes in the phosphatase activity of the spinal cord motoneurons and the spinal ganglion nerve cells following axotomy.
    Galabov G; Manolov S; Ichev K
    C R Acad Bulg Sci; 1966; 19(6):551-4. PubMed ID: 4288351
    [No Abstract]   [Full Text] [Related]  

  • 9. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents.
    Silverman JD; Kruger L
    Somatosens Res; 1988; 5(3):219-46. PubMed ID: 3128853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoride-resistant acid phosphatase system of nociceptive dorsal root afferents.
    Knyihár E
    Experientia; 1971 Oct; 27(10):1205-7. PubMed ID: 5127883
    [No Abstract]   [Full Text] [Related]  

  • 11. [Histochemistry and choline acetyltransferase in cat spinal cord and spinal ganglia].
    Motavkin PA; Okhotin VE
    Arkh Anat Gistol Embriol; 1978 Sep; 75(9):52-6. PubMed ID: 718431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histoenzymology of the developing rat spinal cord.
    Schoenen J
    Neuropathol Appl Neurobiol; 1978; 4(1):37-46. PubMed ID: 683457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A histochemical study of the distribution of the trigeminal divisions in the substantia gelatinosa of the rat.
    Rustioni A; Sanyal S; Kuypers HG
    Brain Res; 1971 Sep; 32(1):45-52. PubMed ID: 5113047
    [No Abstract]   [Full Text] [Related]  

  • 14. Experiments in border disease. VI. Lipid and enzyme histochemistry.
    Storey IJ; Barlow RM
    J Comp Pathol; 1972 Apr; 82(2):163-70. PubMed ID: 4339283
    [No Abstract]   [Full Text] [Related]  

  • 15. Peripheral projections and neuropeptide coexistence in a subpopulation of fluoride-resistant acid phosphatase reactive spinal primary sensory neurons.
    Dalsgaard CJ; Ygge J; Vincent SR; Ohrling M; Dockray GJ; Elde R
    Neurosci Lett; 1984 Sep; 51(1):139-44. PubMed ID: 6096769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping increased glycogen phosphorylase activity in dorsal root ganglia and in the spinal cord following peripheral stimuli.
    Woolf CJ; Chong MS; Rashdi TA
    J Comp Neurol; 1985 Apr; 234(1):60-76. PubMed ID: 3980787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridoxal phosphatase: cytochemical localization in GERL and other organelles of rat neurons.
    Spater HW; Novikoff AB; Spater SH; Quintana N
    J Histochem Cytochem; 1978 Oct; 26(10):809-21. PubMed ID: 31396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Activity fluctuations of acid phosphatase in the spinal cord and spinal ganglia of rats after section of the sciatic nerve].
    COLMANT HJ
    Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr; 1959; 199(1):60-71. PubMed ID: 13670629
    [No Abstract]   [Full Text] [Related]  

  • 20. [On phosphatase activity at the level of the spinal ganglion in Maccacus Rhesus].
    Stefanescu V; Turlea L
    Ann Histochim; 1971; 16(2):149-54. PubMed ID: 4326873
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.