BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28484256)

  • 1. Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution.
    Yang W; Yang Y; Zhang L; Xu H; Guo X; Yang X; Dong B; Cao Y
    Sci Rep; 2017 May; 7(1):1587. PubMed ID: 28484256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues.
    Wang K; Luo H; Tian J; Turunen O; Huang H; Shi P; Hua H; Wang C; Wang S; Yao B
    Appl Environ Microbiol; 2014 Apr; 80(7):2158-65. PubMed ID: 24463976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH.
    Fushinobu S; Ito K; Konno M; Wakagi T; Matsuzawa H
    Protein Eng; 1998 Dec; 11(12):1121-8. PubMed ID: 9930661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo synthesis, constitutive expression of Aspergillus sulphureus beta-xylanase gene in Pichia pastoris and partial enzymic characterization.
    Cao Y; Qiao J; Li Y; Lu W
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):579-85. PubMed ID: 17646981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.
    Song L; Tsang A; Sylvestre M
    Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the thermostability of Trichoderma reesei endo-1,4-beta-xylanase II by combination of disulphide bridges.
    Xiong H; Fenel F; Leisola M; Turunen O
    Extremophiles; 2004 Oct; 8(5):393-400. PubMed ID: 15278768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant.
    Yang HM; Yao B; Meng K; Wang YR; Bai YG; Wu NF
    J Ind Microbiol Biotechnol; 2007 Mar; 34(3):213-8. PubMed ID: 17139507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Aspergillus sulphureus endo-beta-1,4-xylanase expression in Pichia pastoris by codon optimization and analysis of the enzymic characterization.
    Li Y; Zhang B; Chen X; Chen Y; Cao Y
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1321-31. PubMed ID: 19412581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combination of weakly stabilizing mutations with a disulfide bridge in the alpha-helix region of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermal stability through synergism.
    Turunen O; Etuaho K; Fenel F; Vehmaanperä J; Wu X; Rouvinen J; Leisola M
    J Biotechnol; 2001 Jun; 88(1):37-46. PubMed ID: 11377763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds.
    Wakarchuk WW; Sung WL; Campbell RL; Cunningham A; Watson DC; Yaguchi M
    Protein Eng; 1994 Nov; 7(11):1379-86. PubMed ID: 7700870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase.
    Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C
    BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of the Thermostability of Xylanase from
    Tian YS; Xu J; Chen L; Fu XY; Peng RH; Yao QH
    J Microbiol Biotechnol; 2017 Oct; 27(10):1783-1789. PubMed ID: 28851206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing catalytic activity of a hybrid xylanase through single substitution of Leu to Pro near the active site.
    Wang Q; Zhao LL; Sun JY; Liu JX; Weng XY
    World J Microbiol Biotechnol; 2012 Mar; 28(3):929-35. PubMed ID: 22805813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of an alkaline xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5 and improvement of its thermal performance by introducing arginines substitutions.
    Bai W; Zhou C; Xue Y; Huang CH; Guo RT; Ma Y
    Biotechnol Lett; 2014 Jul; 36(7):1495-501. PubMed ID: 24682788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment.
    Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z
    Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of N-terminal disulfide bridge on thermostability of family 11 xylanases].
    Gao S; Wang J; Wu M; Tang C; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1441-9. PubMed ID: 23593868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH.
    Qiu J; Han H; Sun B; Chen L; Yu C; Peng R; Yao Q
    Microbiol Res; 2016 Jan; 182():1-7. PubMed ID: 26686608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Production of Aspergillus usamii endo-β-1,4-Xylanase in Pichia pastoris via Combined Strategies.
    Wang J; Li Y; Liu D
    Biomed Res Int; 2016; 2016():3265895. PubMed ID: 27066499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris.
    Jeya M; Thiagarajan S; Lee JK; Gunasekaran P
    J Biosci Bioeng; 2009 Jul; 108(1):24-9. PubMed ID: 19577187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.