BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28484256)

  • 21. [Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis].
    Han C; Yu S; Ouyang J; Li X; Zhou J; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):623-9. PubMed ID: 20684306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris.
    Berrin JG; Williamson G; Puigserver A; Chaix JC; McLauchlan WR; Juge N
    Protein Expr Purif; 2000 Jun; 19(1):179-87. PubMed ID: 10833405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis.
    Rizzatti AC; Sandrim VC; Jorge JA; Terenzi HF; Polizeli Mde L
    J Ind Microbiol Biotechnol; 2004 Feb; 31(2):88-93. PubMed ID: 14767676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of forced protein evolution to investigate and improve stability of family 10 xylanases. The production of Ca2+-independent stable xylanases.
    Andrews SR; Taylor EJ; Pell G; Vincent F; Ducros VM; Davies GJ; Lakey JH; Gilbert HJ
    J Biol Chem; 2004 Dec; 279(52):54369-79. PubMed ID: 15452124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris.
    Chang X; Xu B; Bai Y; Luo H; Ma R; Shi P; Yao B
    PLoS One; 2017; 12(2):e0171111. PubMed ID: 28187141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5.
    Irfan M; Guler HI; Ozer A; Sapmaz MT; Belduz AO; Hasan F; Shah AA
    Enzyme Microb Technol; 2016 Sep; 91():34-41. PubMed ID: 27444327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability.
    Yin X; Yao Y; Wu MC; Zhu TD; Zeng Y; Pang QF
    Biochemistry (Mosc); 2014 Jun; 79(6):531-7. PubMed ID: 25100011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-beta-xylanase II.
    Fenel F; Leisola M; Jänis J; Turunen O
    J Biotechnol; 2004 Mar; 108(2):137-43. PubMed ID: 15129722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GH11 xylanase from Aspergillus tamarii Kita: Purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry.
    Heinen PR; Bauermeister A; Ribeiro LF; Messias JM; Almeida PZ; Moraes LAB; Vargas-Rechia CG; de Oliveira AHC; Ward RJ; Filho EXF; Kadowaki MK; Jorge JA; Polizeli MLTM
    Int J Biol Macromol; 2018 Mar; 108():291-299. PubMed ID: 29191425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.
    Yin X; Li JF; Wang JQ; Tang CD; Wu MC
    J Sci Food Agric; 2013 Sep; 93(12):3016-23. PubMed ID: 23512640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Molecular cloning and heterologous expression of a new xylanase gene from Verticillium dahliae].
    Zhang G; Rao B; Ye J; Ma L; Zhang X
    Wei Sheng Wu Xue Bao; 2008 Jun; 48(6):765-71. PubMed ID: 18720841
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Correlation between thermostability of the xylanase EvXyn11(TS) and its N-terminal disulfide bridge].
    Min R; Li J; Gao S; Zhang H; Wu J; Wu M
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):346-52. PubMed ID: 23858709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone circularization of Bacillus subtilis family 11 xylanase increases its thermostability and its resistance against aggregation.
    Waldhauer MC; Schmitz SN; Ahlmann-Eltze C; Gleixner JG; Schmelas CC; Huhn AG; Bunne C; Büscher M; Horn M; Klughammer N; Kreft J; Schäfer E; Bayer PA; Krämer SG; Neugebauer J; Wehler P; Mayer MP; Eils R; Di Ventura B
    Mol Biosyst; 2015 Dec; 11(12):3231-43. PubMed ID: 26434634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger.
    Zhou CY; Li TB; Wang YT; Zhu XS; Kang J
    J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production.
    Wongwisansri S; Promdonkoy P; Matetaviparee P; Roongsawang N; Eurwilaichitr L; Tanapongpipat S
    Bioresour Technol; 2013 Mar; 132():410-3. PubMed ID: 23265813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264.
    Li XR; Xu H; Xie J; Yi QF; Li W; Qiao DR; Cao Y; Cao Y
    J Microbiol Biotechnol; 2014 Apr; 24(4):483-8. PubMed ID: 24444997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations.
    Allen MJ; Coutinho PM; Ford CF
    Protein Eng; 1998 Sep; 11(9):783-8. PubMed ID: 9796827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement in thermostability of xylanase from Geobacillus thermodenitrificans C5 by site directed mutagenesis.
    Irfan M; Gonzalez CF; Raza S; Rafiq M; Hasan F; Khan S; Shah AA
    Enzyme Microb Technol; 2018 Apr; 111():38-47. PubMed ID: 29421035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering the thermotolerance and pH optimum of family 11 xylanases by site-directed mutagenesis.
    Turunen O; Jänis J; Fenel F; Leisola M
    Methods Enzymol; 2004; 388():156-67. PubMed ID: 15289069
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.