BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28484256)

  • 41. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.
    Farnoosh G; Khajeh K; Latifi AM; Aghamollaei H
    J Biosci; 2016 Dec; 41(4):577-588. PubMed ID: 27966481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris.
    Zhang HM; Wang JQ; Wu MC; Gao SJ; Li JF; Yang YJ
    J Sci Food Agric; 2014 Mar; 94(4):699-706. PubMed ID: 23881861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization and high expression of recombinant Ustilago maydis xylanase in Pichia pastoris.
    Han H; You S; Zhu B; Fu X; Sun B; Qiu J; Yu C; Chen L; Peng R; Yao Q
    Biotechnol Lett; 2015 Mar; 37(3):697-703. PubMed ID: 25381595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge.
    Wang Y; Fu Z; Huang H; Zhang H; Yao B; Xiong H; Turunen O
    Bioresour Technol; 2012 May; 112():275-9. PubMed ID: 22425398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of a novel cold-active xylanase from Luteimonas species.
    Han Z; Shang-Guan F; Yang J
    World J Microbiol Biotechnol; 2018 Jul; 34(8):123. PubMed ID: 30054735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus.
    Natesh R; Bhanumoorthy P; Vithayathil PJ; Sekar K; Ramakumar S; Viswamitra MA
    J Mol Biol; 1999 May; 288(5):999-1012. PubMed ID: 10329194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular cloning, sequence analysis and expression of a GHF 43 xylanase from Aspergillus niger in Escherichia coli.
    Zhou CY; Wang YT; Zhu TC; Fu GH; Wang DD
    J Gen Appl Microbiol; 2014; 60(6):234-40. PubMed ID: 25742974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis.
    Zhan FX; Wang QH; Jiang SJ; Zhou YL; Zhang GM; Ma YH
    BMC Biotechnol; 2014 Dec; 14():107. PubMed ID: 25511290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45.
    Nair SG; Sindhu R; Shashidhar S
    Appl Biochem Biotechnol; 2008 Jun; 149(3):229-43. PubMed ID: 18500584
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH.
    Turunen O; Vuorio M; Fenel F; Leisola M
    Protein Eng; 2002 Feb; 15(2):141-5. PubMed ID: 11917150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement.
    Sun JY; Liu MQ; Xu YL; Xu ZR; Pan L; Gao H
    Protein Expr Purif; 2005 Jul; 42(1):122-30. PubMed ID: 15939297
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris.
    Roongsawang N; Promdonkoy P; Wongwanichpokhin M; Sornlake W; Puseenam A; Eurwilaichitr L; Tanapongpipat S
    FEMS Yeast Res; 2010 Nov; 10(7):909-16. PubMed ID: 20707819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Catalytic properties of the immobilized Aspergillus tamarii xylanase.
    Gouda MK; Abdel-Naby MA
    Microbiol Res; 2002; 157(4):275-81. PubMed ID: 12501991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase.
    Volokitina MV; Bobrov KS; Piens K; Eneyskaya EV; Tennikova TB; Vlakh EG; Kulminskaya AA
    Biotechnol J; 2015 Jan; 10(1):210-21. PubMed ID: 25367775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1.
    Raj KC; Chandra TS
    FEMS Microbiol Lett; 1996 Dec; 145(3):457-61. PubMed ID: 8978101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single mutations of residues outside the active center of the xylanase Xys1 Delta from Streptomyces halstedii JM8 affect its activity.
    Díaz M; Rodriguez S; Fernández-Abalos JM; De Las Rivas J; Ruiz-Arribas A; Shnyrov VL; Santamaría RI
    FEMS Microbiol Lett; 2004 Nov; 240(2):237-43. PubMed ID: 15522513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a thermostable xylanase from an alkaliphilic Bacillus sp.
    Zhang G; Mao L; Zhao Y; Xue Y; Ma Y
    Biotechnol Lett; 2010 Dec; 32(12):1915-20. PubMed ID: 20730475
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
    Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM
    Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability.
    Wang G; Wu J; Lin J; Ye X; Yao B
    Biochem Biophys Res Commun; 2016 Dec; 481(1-2):139-145. PubMed ID: 27816456
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases.
    Kongsted J; Ryde U; Wydra J; Jensen JH
    Biochemistry; 2007 Nov; 46(47):13581-92. PubMed ID: 17960918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.