BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 28484282)

  • 1. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanorheology of living cells measured by AFM-based force-distance curves.
    Garcia PD; Guerrero CR; Garcia R
    Nanoscale; 2020 Apr; 12(16):9133-9143. PubMed ID: 32293616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy.
    Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H
    Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic mapping of cells based on fast force volume and PeakForce Tapping.
    Efremov YM; Shpichka AI; Kotova SL; Timashev PS
    Soft Matter; 2019 Jul; 15(27):5455-5463. PubMed ID: 31231747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.
    Hecht FM; Rheinlaender J; Schierbaum N; Goldmann WH; Fabry B; Schäffer TE
    Soft Matter; 2015 Jun; 11(23):4584-4591. PubMed ID: 25891371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The viscoelasticity of adherent cells follows a single power-law with distinct local variations within a single cell and across cell lines.
    Sanchez JG; Espinosa FM; Miguez R; Garcia R
    Nanoscale; 2021 Oct; 13(38):16339-16348. PubMed ID: 34581722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring biological materials mechanics with atomic force microscopy - Determination of viscoelastic cell properties from stress relaxation experiments.
    Weber A; Benitez R; Toca-Herrera JL
    Microsc Res Tech; 2022 Oct; 85(10):3284-3295. PubMed ID: 35736395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy.
    Efremov YM; Cartagena-Rivera AX; Athamneh AIM; Suter DM; Raman A
    Nat Protoc; 2018 Oct; 13(10):2200-2216. PubMed ID: 30218102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy.
    Costa KD; Yin FC
    J Biomech Eng; 1999 Oct; 121(5):462-71. PubMed ID: 10529912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.