These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 28484314)
1. New generation emerging technologies for neurorehabilitation and motor assistance. Frisoli A; Solazzi M; Loconsole C; Barsotti M Acta Myol; 2016 Dec; 35(3):141-144. PubMed ID: 28484314 [TBL] [Abstract][Full Text] [Related]
2. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling. Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633 [TBL] [Abstract][Full Text] [Related]
3. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T; Sakurada T; Koike Y; Kansaku K J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293 [TBL] [Abstract][Full Text] [Related]
4. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies. Proietti T; Crocher V; Roby-Brami A; Jarrasse N IEEE Rev Biomed Eng; 2016; 9():4-14. PubMed ID: 27071194 [TBL] [Abstract][Full Text] [Related]
5. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. Young AJ; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):171-182. PubMed ID: 26829794 [TBL] [Abstract][Full Text] [Related]
6. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
7. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. Molteni F; Gasperini G; Cannaviello G; Guanziroli E PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804 [TBL] [Abstract][Full Text] [Related]
8. Advances in Automation Technologies for Lower Extremity Neurorehabilitation: A Review and Future Challenges. Deng W; Papavasileiou I; Qiao Z; Zhang W; Lam KY; Han S IEEE Rev Biomed Eng; 2018; 11():289-305. PubMed ID: 29994006 [TBL] [Abstract][Full Text] [Related]
9. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). Catalán JM; Trigili E; Nann M; Blanco-Ivorra A; Lauretti C; Cordella F; Ivorra E; Armstrong E; Crea S; Alcañiz M; Zollo L; Soekadar SR; Vitiello N; García-Aracil N J Neuroeng Rehabil; 2023 May; 20(1):61. PubMed ID: 37149621 [TBL] [Abstract][Full Text] [Related]
10. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation. Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450853 [TBL] [Abstract][Full Text] [Related]
11. Online adaptive assistance control in robot-based neurorehabilitation therapy. Stroppa F; Marcheschi S; Mastronicola N; Loconsole C; Frisoli A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():628-633. PubMed ID: 28813890 [TBL] [Abstract][Full Text] [Related]
12. Embedded Control System for Smart Walking Assistance Device. Bosnak M; Skrjanc I IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):205-214. PubMed ID: 27093701 [TBL] [Abstract][Full Text] [Related]
13. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging. Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591 [TBL] [Abstract][Full Text] [Related]
14. Design and testing of an under-actuated surface EMG-driven hand exoskeleton. Lince A; Celadon N; Battezzato A; Favetto A; Appendino S; Ariano P; Paleari M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():670-675. PubMed ID: 28813897 [TBL] [Abstract][Full Text] [Related]
15. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. Pezent E; Rose CG; Deshpande AD; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():720-725. PubMed ID: 28813905 [TBL] [Abstract][Full Text] [Related]
16. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906 [TBL] [Abstract][Full Text] [Related]
17. Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review. Kian A; Widanapathirana G; Joseph AM; Lai DTH; Begg R Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336413 [TBL] [Abstract][Full Text] [Related]
18. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review. Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832 [TBL] [Abstract][Full Text] [Related]
19. User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users. Meyer JT; Schrade SO; Lambercy O; Gassert R IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1159-1166. PubMed ID: 31374786 [TBL] [Abstract][Full Text] [Related]
20. Brain-machine interfaces in neurorehabilitation of stroke. Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]