These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 28484314)
21. Rehabilitative Soft Exoskeleton for Rodents. Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858 [TBL] [Abstract][Full Text] [Related]
22. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders. Gunn M; Shank TM; Eppes M; Hossain J; Rahman T IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882 [TBL] [Abstract][Full Text] [Related]
23. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. Meeker C; Park S; Bishop L; Stein J; Ciocarlie M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985 [TBL] [Abstract][Full Text] [Related]
24. NeuroSuitUp: System Architecture and Validation of a Motor Rehabilitation Wearable Robotics and Serious Game Platform. Mitsopoulos K; Fiska V; Tagaras K; Papias A; Antoniou P; Nizamis K; Kasimis K; Sarra PD; Mylopoulou D; Savvidis T; Praftsiotis A; Arvanitidis A; Lyssas G; Chasapis K; Moraitopoulos A; Astaras A; Bamidis PD; Athanasiou A Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991992 [TBL] [Abstract][Full Text] [Related]
25. User activity recognition system to improve the performance of environmental control interfaces: a pilot study with patients. Bertomeu-Motos A; Ezquerro S; Barios JA; Lledó LD; Domingo S; Nann M; Martin S; Soekadar SR; Garcia-Aracil N J Neuroeng Rehabil; 2019 Jan; 16(1):10. PubMed ID: 30646915 [TBL] [Abstract][Full Text] [Related]
26. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation. Biggar S; Yao W IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796 [TBL] [Abstract][Full Text] [Related]
27. Exoskeleton for gait rehabilitation of children: Conceptual design. Cornejo JL; Santana JF; Salinas SA IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():452-454. PubMed ID: 28813861 [TBL] [Abstract][Full Text] [Related]
28. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives. Alam M; Rodrigues W; Pham BN; Thakor NV Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571 [TBL] [Abstract][Full Text] [Related]
29. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review. Piggott L; Wagner S; Ziat M Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449 [TBL] [Abstract][Full Text] [Related]
30. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction. Jarrett C; McDaid AJ IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475 [TBL] [Abstract][Full Text] [Related]
31. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Hortal E; Planelles D; Resquin F; Climent JM; Azorín JM; Pons JL J Neuroeng Rehabil; 2015 Oct; 12():92. PubMed ID: 26476869 [TBL] [Abstract][Full Text] [Related]
32. Ethical considerations in providing an upper limb exoskeleton device for stroke patients. Bulboacă AE; Bolboacă SD; Bulboacă AC Med Hypotheses; 2017 Apr; 101():61-64. PubMed ID: 28351495 [TBL] [Abstract][Full Text] [Related]
33. PEXO - A Pediatric Whole Hand Exoskeleton for Grasping Assistance in Task-Oriented Training. Butzer T; Dittli J; Lieber J; van Hedel HJA; Meyer-Heim A; Lambercy O; Gassert R IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():108-114. PubMed ID: 31374615 [TBL] [Abstract][Full Text] [Related]
34. Artificial Intelligence-Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review. Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803911 [TBL] [Abstract][Full Text] [Related]
35. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review. Gandolfi M; Valè N; Posteraro F; Morone G; Dell'orco A; Botticelli A; Dimitrova E; Gervasoni E; Goffredo M; Zenzeri J; Antonini A; Daniele C; Benanti P; Boldrini P; Bonaiuti D; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Molteni F; Petrarca M; Picelli A; Senatore M; Turchetti G; Giansanti D; Mazzoleni S; Eur J Phys Rehabil Med; 2021 Oct; 57(5):831-840. PubMed ID: 34042413 [TBL] [Abstract][Full Text] [Related]
37. Event-based control for sit-to-stand transition using a wearable exoskeleton. Rajasekaran V; Vinagre M; Aranda J IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():400-405. PubMed ID: 28813852 [TBL] [Abstract][Full Text] [Related]
38. Modular one-to-many clutchable actuator for a soft elbow exosuit. Canesi M; Xiloyannis M; Ajoudani A; Biechi A; Masia L IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1679-1685. PubMed ID: 28814061 [TBL] [Abstract][Full Text] [Related]
39. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
40. Brain-Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not? Colucci A; Vermehren M; Cavallo A; Angerhöfer C; Peekhaus N; Zollo L; Kim WS; Paik NJ; Soekadar SR Neurorehabil Neural Repair; 2022 Dec; 36(12):747-756. PubMed ID: 36426541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]