BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28484377)

  • 1. Activity-Dependent Synaptic Refinement: New Insights from
    Vonhoff F; Keshishian H
    Front Syst Neurosci; 2017; 11():23. PubMed ID: 28484377
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Vonhoff F; Keshishian H
    J Neurosci; 2017 May; 37(22):5511-5526. PubMed ID: 28476946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction.
    Vonhoff F; Keshishian H
    Dev Neurobiol; 2017 Jan; 77(1):39-60. PubMed ID: 27281494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms governing synaptic development in Drosophila melanogaster.
    Keshishian H; Chiba A; Chang TN; Halfon MS; Harkins EW; Jarecki J; Wang L; Anderson M; Cash S; Halpern ME
    J Neurobiol; 1993 Jun; 24(6):757-87. PubMed ID: 8251016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of neural activity during synaptogenesis in Drosophila.
    Jarecki J; Keshishian H
    J Neurosci; 1995 Dec; 15(12):8177-90. PubMed ID: 8613752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth cone behavior underlying the development of stereotypic synaptic connections in Drosophila embryos.
    Halpern ME; Chiba A; Johansen J; Keshishian H
    J Neurosci; 1991 Oct; 11(10):3227-38. PubMed ID: 1658247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target recognition at the tips of postsynaptic filopodia: accumulation and function of Capricious.
    Kohsaka H; Nose A
    Development; 2009 Apr; 136(7):1127-35. PubMed ID: 19270171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of synaptic connectivity: levels of Fasciclin II influence synaptic growth in the Drosophila CNS.
    Baines RA; Seugnet L; Thompson A; Salvaterra PM; Bate M
    J Neurosci; 2002 Aug; 22(15):6587-95. PubMed ID: 12151538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision and plasticity during Drosophila neuromuscular development.
    Keshishian H; Chang TN; Jarecki J
    FASEB J; 1994 Jul; 8(10):731-7. PubMed ID: 8050672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide and synaptic dynamics in the adult brain: physiopathological aspects.
    Moreno-López B; González-Forero D
    Rev Neurosci; 2006; 17(3):309-57. PubMed ID: 16878402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of connectivity in a motoneuronal network in Drosophila larvae.
    Couton L; Mauss AS; Yunusov T; Diegelmann S; Evers JF; Landgraf M
    Curr Biol; 2015 Mar; 25(5):568-76. PubMed ID: 25702582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ly6 neurotoxin-like molecule target of wit regulates spontaneous neurotransmitter release at the developing neuromuscular junction in Drosophila.
    Kim NC; Marqués G
    Dev Neurobiol; 2012 Dec; 72(12):1541-58. PubMed ID: 22467519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture.
    Glanzman DL
    J Neurobiol; 1994 Jun; 25(6):666-93. PubMed ID: 8071666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila.
    Wu Y; Kawasaki F; Ordway RW
    J Neurophysiol; 2005 May; 93(5):2396-405. PubMed ID: 15845998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapse elimination from the mouse neuromuscular junction in vitro: a non-Hebbian activity-dependent process.
    Nelson PG; Fields RD; Yu C; Liu Y
    J Neurobiol; 1993 Nov; 24(11):1517-30. PubMed ID: 8283186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth cone choices of Drosophila motoneurons in response to muscle fiber mismatch.
    Chiba A; Hing H; Cash S; Keshishian H
    J Neurosci; 1993 Feb; 13(2):714-32. PubMed ID: 8426233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.