These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28484384)

  • 1. Mechanisms of Winner-Take-All and Group Selection in Neuronal Spiking Networks.
    Chen Y
    Front Comput Neurosci; 2017; 11():20. PubMed ID: 28484384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile networks of simulated spiking neurons displaying winner-take-all behavior.
    Chen Y; McKinstry JL; Edelman GM
    Front Comput Neurosci; 2013; 7():16. PubMed ID: 23515493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation with spikes in a winner-take-all network.
    Oster M; Douglas R; Liu SC
    Neural Comput; 2009 Sep; 21(9):2437-65. PubMed ID: 19548795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.
    McKinstry JL; Edelman GM
    Front Neurorobot; 2013; 7():10. PubMed ID: 23760804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast computation with spikes in a recurrent neural network.
    Jin DZ; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051922. PubMed ID: 12059608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential activity in asymmetrically coupled winner-take-all circuits.
    Mostafa H; Indiveri G
    Neural Comput; 2014 Sep; 26(9):1973-2004. PubMed ID: 24877737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joining distributed pattern processing and homeostatic plasticity in recurrent on-center off-surround shunting networks: noise, saturation, short-term memory, synaptic scaling, and BDNF.
    Chandler B; Grossberg S
    Neural Netw; 2012 Jan; 25(1):21-9. PubMed ID: 21890320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.
    Srinivasa N; Cho Y
    Front Comput Neurosci; 2014; 8():159. PubMed ID: 25566045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity.
    Binas J; Rutishauser U; Indiveri G; Pfeiffer M
    Front Comput Neurosci; 2014; 8():68. PubMed ID: 25071538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".
    Engelken R; Farkhooi F; Hansel D; van Vreeswijk C; Wolf F
    F1000Res; 2016; 5():2043. PubMed ID: 27746905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all.
    Shoemaker PA
    Front Comput Neurosci; 2015; 9():12. PubMed ID: 25741276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine.
    Palma J; Grossberg S; Versace M
    Front Comput Neurosci; 2012; 6():42. PubMed ID: 22754524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all.
    Fukai T; Tanaka S
    Neural Comput; 1997 Jan; 9(1):77-97. PubMed ID: 9117902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical coding of sensory information with competitive networks.
    Rabinovich MI; Huerta R; Volkovskii A; Abarbanel HD; Stopfer M; Laurent G
    J Physiol Paris; 2000; 94(5-6):465-71. PubMed ID: 11165913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiking networks that efficiently process dynamic sensory features explain receptor information mixing in somatosensory cortex.
    Koren V; Emanuel AJ; Panzeri S
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of winner-take-all competition in recurrent neural networks with lateral inhibition.
    Mao ZH; Massaquoi SG
    IEEE Trans Neural Netw; 2007 Jan; 18(1):55-69. PubMed ID: 17278461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic neural fields as a step toward cognitive neuromorphic architectures.
    Sandamirskaya Y
    Front Neurosci; 2013; 7():276. PubMed ID: 24478620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent neural networks of integrate-and-fire cells simulating short-term memory and wrist movement tasks derived from continuous dynamic networks.
    Maier MA; Shupe LE; Fetz EE
    J Physiol Paris; 2003; 97(4-6):601-12. PubMed ID: 15242669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire.
    de Almeida L; Idiart M; Lisman JE
    J Neurosci; 2009 Jun; 29(23):7497-503. PubMed ID: 19515917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.