These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28484488)

  • 1. Progress in EEG-Based Brain Robot Interaction Systems.
    Mao X; Li M; Li W; Niu L; Xian B; Zeng M; Chen G
    Comput Intell Neurosci; 2017; 2017():1742862. PubMed ID: 28484488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive review of EEG-based brain-computer interface paradigms.
    Abiri R; Borhani S; Sellers EW; Jiang Y; Zhao X
    J Neural Eng; 2019 Feb; 16(1):011001. PubMed ID: 30523919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 5. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
    Zhao J; Li W; Mao X; Li M
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations.
    Al-Qaysi ZT; Zaidan BB; Zaidan AA; Suzani MS
    Comput Methods Programs Biomed; 2018 Oct; 164():221-237. PubMed ID: 29958722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
    Tariq M; Trivailo PM; Simic M
    Front Hum Neurosci; 2018; 12():312. PubMed ID: 30127730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interface for robot control with eye artifacts for assistive applications.
    Karas K; Pozzi L; Pedrocchi A; Braghin F; Roveda L
    Sci Rep; 2023 Oct; 13(1):17512. PubMed ID: 37845318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-Computer Interface-Based Humanoid Control: A Review.
    Chamola V; Vineet A; Nayyar A; Hossain E
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.
    Choi B; Jo S
    PLoS One; 2013; 8(9):e74583. PubMed ID: 24023953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An SSVEP based BCI to control a humanoid robot by using portable EEG device.
    Güneysu A; Akin HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6905-8. PubMed ID: 24111332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.
    Leeb R; Perdikis S; Tonin L; Biasiucci A; Tavella M; Creatura M; Molina A; Al-Khodairy A; Carlson T; Millán JD
    Artif Intell Med; 2013 Oct; 59(2):121-32. PubMed ID: 24119870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel system of SSVEP-based human-robot coordination.
    Han X; Lin K; Gao S; Gao X
    J Neural Eng; 2019 Feb; 16(1):016006. PubMed ID: 30221626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
    Quiles E; Dadone J; Chio N; García E
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.