These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28484515)

  • 1. Cultivation of algal biofilm using different lignocellulosic materials as carriers.
    Zhang Q; Liu C; Li Y; Yu Z; Chen Z; Ye T; Wang X; Hu Z; Liu S; Xiao B; Jin S
    Biotechnol Biofuels; 2017; 10():115. PubMed ID: 28484515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulosic residue as bio-carrier for algal biofilm growth: Effects of carrier physicochemical proprieties and toxicity on algal biomass production and composition.
    Zhang Q; Yu Z; Jin S; Zhu L; Liu C; Zheng H; Zhou T; Liu Y; Ruan R
    Bioresour Technol; 2019 Dec; 293():122091. PubMed ID: 31514119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the surface physico-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm.
    Gross M; Zhao X; Mascarenhas V; Wen Z
    Biotechnol Biofuels; 2016; 9():38. PubMed ID: 26884812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.
    Gross M; Wen Z
    Bioresour Technol; 2014 Nov; 171():50-8. PubMed ID: 25189508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate properties as controlling parameters in attached algal cultivation.
    Karimi Z; Laughinghouse HD; Davis VA; Blersch DM
    Appl Microbiol Biotechnol; 2021 Mar; 105(5):1823-1835. PubMed ID: 33564919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving biomass and carbohydrate production of microalgae in the rotating cultivation system on natural carriers.
    Mousavian Z; Safavi M; Salehirad A; Azizmohseni F; Hadizadeh M; Mirdamadi S
    AMB Express; 2023 Apr; 13(1):39. PubMed ID: 37119344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity.
    Kim BH; Kim DH; Choi JW; Kang Z; Cho DH; Kim JY; Oh HM; Kim HS
    J Microbiol Biotechnol; 2015 Sep; 25(9):1547-54. PubMed ID: 25951844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an attached microalgal growth system for biofuel production.
    Johnson MB; Wen Z
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):525-34. PubMed ID: 19636552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-Selection and Outdoor Evaluation of Novel, Halotolerant Algal Strains for Winter Cultivation.
    Dahlin LR; Van Wychen S; Gerken HG; McGowen J; Pienkos PT; Posewitz MC; Guarnieri MT
    Front Plant Sci; 2018; 9():1513. PubMed ID: 30459782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm-based algal cultivation systems.
    Gross M; Jarboe D; Wen Z
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5781-9. PubMed ID: 26078112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice straw as microalgal biofilm bio-carrier: Effects of indigenous microorganisms on rice straw and microalgal biomass production.
    Yan H; Zhang Q; Wang Y; Cui X; Liu Y; Yu Z; Xu S; Ruan R
    J Environ Manage; 2023 Sep; 341():118075. PubMed ID: 37141712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm photobioreactors for the treatment of industrial wastewaters.
    Muñoz R; Köllner C; Guieysse B
    J Hazard Mater; 2009 Jan; 161(1):29-34. PubMed ID: 18436371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algae-based biofilm productivity utilizing dairy wastewater: effects of temperature and organic carbon concentration.
    Fica ZT; Sims RC
    J Biol Eng; 2016; 10():18. PubMed ID: 28018482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products.
    Christenson LB; Sims RC
    Biotechnol Bioeng; 2012 Jul; 109(7):1674-84. PubMed ID: 22328283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algae as green energy reserve: Technological outlook on biofuel production.
    Anto S; Mukherjee SS; Muthappa R; Mathimani T; Deviram G; Kumar SS; Verma TN; Pugazhendhi A
    Chemosphere; 2020 Mar; 242():125079. PubMed ID: 31678847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.
    Gross M; Henry W; Michael C; Wen Z
    Bioresour Technol; 2013 Dec; 150():195-201. PubMed ID: 24161650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima.
    Arora N; Patel A; Pruthi PA; Pruthi V
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1534-1541. PubMed ID: 27465038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass.
    Liang MH; Xue LL; Jiang JG
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.
    Park JB; Craggs RJ
    Water Sci Technol; 2011; 63(10):2403-10. PubMed ID: 21977667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.
    Gross M; Mascarenhas V; Wen Z
    Biotechnol Bioeng; 2015 Oct; 112(10):2040-50. PubMed ID: 25899246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.