These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28484812)

  • 1. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5453-5467. PubMed ID: 28484812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SdhE-dependent formation of a functional Acetobacter pasteurianus succinate dehydrogenase in Gluconobacter oxydans--a first step toward a complete tricarboxylic acid cycle.
    Kiefler I; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9147-60. PubMed ID: 26399411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.
    Krajewski V; Simic P; Mouncey NJ; Bringer S; Sahm H; Bott M
    Appl Environ Microbiol; 2010 Jul; 76(13):4369-76. PubMed ID: 20453146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 5. Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol.
    Richhardt J; Bringer S; Bott M
    Appl Environ Microbiol; 2012 Oct; 78(19):6975-86. PubMed ID: 22843527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis.
    Wei L; Zhu D; Zhou J; Zhang J; Zhu K; Du L; Hua Q
    Microbiol Res; 2014; 169(5-6):469-75. PubMed ID: 24035043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H.
    Kranz A; Steinmann A; Degner U; Mengus-Kaya A; Matamouros S; Bott M; Polen T
    BMC Genomics; 2018 Oct; 19(1):753. PubMed ID: 30326828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H.
    Richhardt J; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2013 May; 97(10):4315-23. PubMed ID: 23354449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium
    Schweikert S; Kranz A; Yakushi T; Filipchyk A; Polen T; Etterich H; Bringer S; Bott M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504.
    Kostner D; Luchterhand B; Junker A; Volland S; Daniel R; Büchs J; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):375-86. PubMed ID: 25267158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.
    Hanke T; Nöh K; Noack S; Polen T; Bringer S; Sahm H; Wiechert W; Bott M
    Appl Environ Microbiol; 2013 Apr; 79(7):2336-48. PubMed ID: 23377928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.
    Peters B; Junker A; Brauer K; Mühlthaler B; Kostner D; Mientus M; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2521-30. PubMed ID: 22940799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H.
    Hölscher T; Görisch H
    J Bacteriol; 2006 Nov; 188(21):7668-76. PubMed ID: 16936032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.
    Zhang H; Shi L; Mao X; Lin J; Wei D
    J Biotechnol; 2016 Nov; 237():18-24. PubMed ID: 27619641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications.
    Kataoka N
    Biosci Biotechnol Biochem; 2024 Apr; 88(5):499-508. PubMed ID: 38323387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.