These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28484901)
101. Evidence for a large Paleozoic Impact Crater Strewn Field in the Rocky Mountains. Kenkmann T; Sundell KA; Cook D Sci Rep; 2018 Sep; 8(1):13246. PubMed ID: 30185801 [TBL] [Abstract][Full Text] [Related]
102. Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes. Tschauner O; Asimow PD; Kostandova N; Ahrens TJ; Ma C; Sinogeikin S; Liu Z; Fakra S; Tamura N Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13691-5. PubMed ID: 19667178 [TBL] [Abstract][Full Text] [Related]
103. Stability toward High Energy Radiation of Non-Proteinogenic Amino Acids: Implications for the Origins of Life. Cataldo F; Iglesias-Groth S; Angelini G; Hafez Y Life (Basel); 2013 Jul; 3(3):449-73. PubMed ID: 25369815 [TBL] [Abstract][Full Text] [Related]
104. Physicochemical properties of L- and DL-valine: first-principles calculations. Fedorov I; Korabel'nikov D; Nguyen C; Prosekov A Amino Acids; 2020 Mar; 52(3):425-433. PubMed ID: 32008092 [TBL] [Abstract][Full Text] [Related]
105. Homochirality and chiral-induced spin selectivity: A new spin on the origin of life. Bloom BP; Waldeck AR; Waldeck DH Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2210505119. PubMed ID: 35947591 [No Abstract] [Full Text] [Related]
106. Peptide studies. V. Synthesis and racemization of some optically active tripeptides of L- and D-valine. SHANKMAN S; HIGA S J Pharm Sci; 1962 Feb; 51():137-40. PubMed ID: 13911234 [No Abstract] [Full Text] [Related]
107. Prebiotic access to enantioenriched glyceraldehyde mediated by peptides. Yu J; Jones AX; Legnani L; Blackmond DG Chem Sci; 2021 Mar; 12(18):6350-6354. PubMed ID: 34084433 [TBL] [Abstract][Full Text] [Related]
109. Inconclusive evidence for nonterrestrial isoleucine enantiomeric excesses in primitive meteorites. Elsila JE; Glavin DP; Dworkin JP; Martins Z; Bada JL Proc Natl Acad Sci U S A; 2012 Nov; 109(48):E3288; author reply E3289. PubMed ID: 23064644 [No Abstract] [Full Text] [Related]
110. Bullet impacts in building stone excavate approximately conical craters, with dimensions that are controlled by target material. Campbell O; Blenkinsop T; Gilbert O; Mol L Sci Rep; 2022 Oct; 12(1):17634. PubMed ID: 36271022 [TBL] [Abstract][Full Text] [Related]
111. A laboratory model of a prebiotic, spontaneous, and continuous enantiomeric enrichment process. Goldberg SI Orig Life Evol Biosph; 2013 Feb; 43(1):31-7. PubMed ID: 23344885 [TBL] [Abstract][Full Text] [Related]
112. Hypervelocity impacts as a source of deceiving surface signatures on iron-rich asteroids. Libourel G; Nakamura AM; Beck P; Potin S; Ganino C; Jacomet S; Ogawa R; Hasegawa S; Michel P Sci Adv; 2019 Aug; 5(8):eaav3971. PubMed ID: 31489363 [TBL] [Abstract][Full Text] [Related]
113. Dynamic Mechanical Damage and Non-Shock initiation of a New Polymer Bonded Explosive during Penetration. Li X; Liu Y; Sun Y Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32545789 [TBL] [Abstract][Full Text] [Related]
114. First contact: Fine structure of the impact flash and ejecta during hypervelocity impact. Simpson G; Moreno J; Shaeffer M; Ramesh KT PNAS Nexus; 2023 Jul; 2(7):pgad214. PubMed ID: 37441613 [TBL] [Abstract][Full Text] [Related]
115. The Texas A&M University Hypervelocity Impact Laboratory: A modern aeroballistic range facility. Rogers JA; Bass N; Mead PT; Mote A; Lukasik GD; Intardonato M; Harrison K; Leaverton JD; Kota KR; Wilkerson JW; Reddy JN; Kulatilaka WD; Lacy TE Rev Sci Instrum; 2022 Aug; 93(8):085106. PubMed ID: 36050072 [TBL] [Abstract][Full Text] [Related]
116. Evidence for the likely origin of homochirality in amino acids, sugars, and nucleosides on prebiotic Earth. J Am Chem Soc; 2012 May; 134(19):8287. PubMed ID: 22587353 [No Abstract] [Full Text] [Related]
117. Racemization of Valine by Impact-Induced Heating. Furukawa Y; Takase A; Sekine T; Kakegawa T; Kobayashi T Orig Life Evol Biosph; 2018 Mar; 48(1):131-139. PubMed ID: 28484901 [TBL] [Abstract][Full Text] [Related]
118. Non-racemic amino acids in the Murray and Murchison meteorites. Pizzarello S; Cronin JR Geochim Cosmochim Acta; 2000 Jan; 64(2):329-38. PubMed ID: 11543420 [TBL] [Abstract][Full Text] [Related]
119. Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Pastorek A; Hrnčířová J; Jankovič L; Nejdl L; Civiš S; Ivanek O; Shestivska V; KníŽek A; Kubelík P; Šponer J; Petera L; Křivková A; Cassone G; Vaculovičová M; Šponer JE; Ferus M Chem Commun (Camb); 2019 Aug; 55(71):10563-10566. PubMed ID: 31417990 [TBL] [Abstract][Full Text] [Related]
120. The fate of amino acids during simulated meteoritic impact. Bertrand M; van der Gaast S; Vilas F; Hörz F; Haynes G; Chabin A; Brack A; Westall F Astrobiology; 2009 Dec; 9(10):943-51. PubMed ID: 20041747 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]