These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 28484966)

  • 1. The Role of Simple Semantics in the Process of Artificial Grammar Learning.
    Öttl B; Jäger G; Kaup B
    J Psycholinguist Res; 2017 Oct; 46(5):1285-1308. PubMed ID: 28484966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semantics boosts syntax in artificial grammar learning tasks with recursion.
    Fedor A; Varga M; Szathmáry E
    J Exp Psychol Learn Mem Cogn; 2012 May; 38(3):776-82. PubMed ID: 22268913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition and processing of an artificial mini-language combining semantic and syntactic elements.
    Al Roumi F; Dotan D; Yang T; Wang L; Dehaene S
    Cognition; 2019 Apr; 185():49-61. PubMed ID: 30660049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ERP study of structural anomalies in native and semantic free artificial grammar: evidence for shared processing mechanisms.
    Tabullo Á; Sevilla Y; Segura E; Zanutto S; Wainselboim A
    Brain Res; 2013 Aug; 1527():149-60. PubMed ID: 23711889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using dual-task methodology to dissociate automatic from nonautomatic processes involved in artificial grammar learning.
    Hendricks MA; Conway CM; Kellogg RT
    J Exp Psychol Learn Mem Cogn; 2013 Sep; 39(5):1491-500. PubMed ID: 23627281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning simple and complex artificial grammars in the presence of a semantic reference field: effects on performance and awareness.
    Van den Bos E; Poletiek FH
    Front Psychol; 2015; 6():158. PubMed ID: 25745408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What artificial grammar learning reveals about the neurobiology of syntax.
    Petersson KM; Folia V; Hagoort P
    Brain Lang; 2012 Feb; 120(2):83-95. PubMed ID: 20943261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does formal complexity reflect cognitive complexity? Investigating aspects of the Chomsky Hierarchy in an artificial language learning study.
    Öttl B; Jäger G; Kaup B
    PLoS One; 2015; 10(4):e0123059. PubMed ID: 25885790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntactic structure and artificial grammar learning: the learnability of embedded hierarchical structures.
    de Vries MH; Monaghan P; Knecht S; Zwitserlood P
    Cognition; 2008 May; 107(2):763-74. PubMed ID: 17963740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear grammar as a possible stepping-stone in the evolution of language.
    Jackendoff R; Wittenberg E
    Psychon Bull Rev; 2017 Feb; 24(1):219-224. PubMed ID: 27368633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The count-mass distinction in typically developing and grammatically specifically language impaired children: new evidence on the role of syntax and semantics.
    Froud K; van der Lely HK
    J Commun Disord; 2008; 41(3):274-303. PubMed ID: 18206904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar.
    Chen L; Goucha T; Männel C; Friederici AD; Zaccarella E
    Hum Brain Mapp; 2021 Jul; 42(10):3253-3268. PubMed ID: 33822433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar.
    de Vries MH; Barth AC; Maiworm S; Knecht S; Zwitserlood P; Flöel A
    J Cogn Neurosci; 2010 Nov; 22(11):2427-36. PubMed ID: 19925194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing.
    Dominey PF; Inui T; Hoen M
    Brain Lang; 2009; 109(2-3):80-92. PubMed ID: 18835637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface features can deeply affect artificial grammar learning.
    Jiménez L; Mendes Oliveira H; Soares AP
    Conscious Cogn; 2020 Apr; 80():102919. PubMed ID: 32200204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between syntax and semantics during sentence comprehension: ERP effects of combining syntactic and semantic violations.
    Hagoort P
    J Cogn Neurosci; 2003 Aug; 15(6):883-99. PubMed ID: 14511541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On neural correlates of individual differences in novel grammar learning: An fMRI study.
    Kepinska O; de Rover M; Caspers J; Schiller NO
    Neuropsychologia; 2017 Apr; 98():156-168. PubMed ID: 27305834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntactic complexity and ambiguity resolution in a free word order language: behavioral and electrophysiological evidences from Basque.
    Erdocia K; Laka I; Mestres-Missé A; Rodriguez-Fornells A
    Brain Lang; 2009 Apr; 109(1):1-17. PubMed ID: 19223065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wh-Words: Existential or Universal Quantifiers in Child Mandarin?
    Huang H; Cheng H; Qian L; Chen Y; Zhou P
    J Psycholinguist Res; 2024 May; 53(3):46. PubMed ID: 38744739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring strategic control in artificial grammar learning.
    Norman E; Price MC; Jones E
    Conscious Cogn; 2011 Dec; 20(4):1920-9. PubMed ID: 21824790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.