These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 28484977)
1. Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici. Sahli R; Rivière C; Siah A; Smaoui A; Samaillie J; Hennebelle T; Roumy V; Ksouri R; Halama P; Sahpaz S Environ Sci Pollut Res Int; 2018 Oct; 25(30):29775-29783. PubMed ID: 28484977 [TBL] [Abstract][Full Text] [Related]
2. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Mejri S; Siah A; Coutte F; Magnin-Robert M; Randoux B; Tisserant B; Krier F; Jacques P; Reignault P; Halama P Environ Sci Pollut Res Int; 2018 Oct; 25(30):29822-29833. PubMed ID: 28634804 [TBL] [Abstract][Full Text] [Related]
3. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Lynch KM; Zannini E; Guo J; Axel C; Arendt EK; Kildea S; Coffey A J Appl Microbiol; 2016 Aug; 121(2):485-94. PubMed ID: 27155088 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of dill seed essential oil antifungal activities to control Zymoseptoria tritici. Deweer C; Yaguiyan A; Muchembled J; Sahmer K; Dermont C; Halama P Commun Agric Appl Biol Sci; 2013; 78(3):489-95. PubMed ID: 25151824 [TBL] [Abstract][Full Text] [Related]
5. Importance of the C Platel R; Chaveriat L; Le Guenic S; Pipeleers R; Magnin-Robert M; Randoux B; Trapet P; Lequart V; Joly N; Halama P; Martin P; Höfte M; Reignault P; Siah A Molecules; 2020 Dec; 26(1):. PubMed ID: 33374771 [TBL] [Abstract][Full Text] [Related]
6. Antifungal Effects of Drimane Sesquiterpenoids Isolated from Paz C; Viscardi S; Iturra A; Marin V; Miranda F; Barra PJ; Mendez I; Duran P Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036992 [No Abstract] [Full Text] [Related]
7. Two Novel Allioui N; Driss F; Dhouib H; Jlail L; Tounsi S; Frikha-Gargouri O Biomed Res Int; 2021; 2021():6611657. PubMed ID: 34195272 [TBL] [Abstract][Full Text] [Related]
8. An ecological approach to discover new bioactive extracts and products: the case of extremophile plants. Sahli R; Rivière C; Neut C; Bero J; Sahuc ME; Smaoui A; Beaufay C; Roumy V; Hennebelle T; Rouillé Y; Quetin-Leclercq J; Séron K; Ksouri R; Sahpaz S J Pharm Pharmacol; 2017 Aug; 69(8):1041-1055. PubMed ID: 28444868 [TBL] [Abstract][Full Text] [Related]
9. Lipopeptide culture filtrates from Bacillus spp. provide effective protection to wheat against the foliar pathogen Zymoseptoria tritici. El Arbi A; Arnauld S; Chataigné G; Lecouturier D; Bricout A; Gharsallah N; Jacques P; Siah A; Rochex A J Appl Microbiol; 2024 Jan; 135(1):. PubMed ID: 38115638 [TBL] [Abstract][Full Text] [Related]
10. Escuzarmycins A-D, Potent Biofungicides to Control Fernández-Pastor I; González-Menéndez V; González I; Serrano R; Mackenzie TA; Benítez G; Casares-Porcel M; Genilloud O; Reyes F J Agric Food Chem; 2024 Jul; 72(27):15256-15264. PubMed ID: 38935555 [TBL] [Abstract][Full Text] [Related]
11. How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. McDonald BA; Mundt CC Phytopathology; 2016 Sep; 106(9):948-55. PubMed ID: 27111799 [TBL] [Abstract][Full Text] [Related]
12. Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Dreisigacker S; Wang X; Martinez Cisneros BA; Jing R; Singh PK Theor Appl Genet; 2015 Nov; 128(11):2317-29. PubMed ID: 26298303 [TBL] [Abstract][Full Text] [Related]
13. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
14. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Stukenbrock EH; Quaedvlieg W; Javan-Nikhah M; Zala M; Crous PW; McDonald BA Mycologia; 2012; 104(6):1397-407. PubMed ID: 22675045 [TBL] [Abstract][Full Text] [Related]
15. Isolate-Specific Responses of the Nonhost Grass Reilly A; Karki SJ; Twamley A; Tiley AMM; Kildea S; Feechan A Phytopathology; 2021 Feb; 111(2):356-368. PubMed ID: 32720875 [TBL] [Abstract][Full Text] [Related]
16. The wheat-Septoria conflict: a new front opening up? O'Driscoll A; Kildea S; Doohan F; Spink J; Mullins E Trends Plant Sci; 2014 Sep; 19(9):602-10. PubMed ID: 24957882 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. Cairns T; Meyer V BMC Genomics; 2017 Aug; 18(1):631. PubMed ID: 28818040 [TBL] [Abstract][Full Text] [Related]
18. Sesamol-based terpenoids as promising bio-sourced crop protection compounds against the wheat pathogen Zymoseptoria tritici. Damiens A; Alebrahim MT; Léonard E; Fayeulle A; Furman C; Hilbert JL; Siah A; Billamboz M Pest Manag Sci; 2021 May; 77(5):2403-2414. PubMed ID: 33415837 [TBL] [Abstract][Full Text] [Related]
19. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease. Karki SJ; Reilly A; Zhou B; Mascarello M; Burke J; Doohan F; Douchkov D; Schweizer P; Feechan A J Exp Bot; 2021 Feb; 72(2):733-746. PubMed ID: 33095257 [TBL] [Abstract][Full Text] [Related]