These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28485303)
1. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Liu M; Zhou Z; Chai Y; Zhang S; Wu X; Huang S; Su J; Jiang J Biofabrication; 2017 Jun; 9(2):025030. PubMed ID: 28485303 [TBL] [Abstract][Full Text] [Related]
2. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques. Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic generation of hollow Ca-alginate microfibers. Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737 [TBL] [Abstract][Full Text] [Related]
4. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568 [TBL] [Abstract][Full Text] [Related]
5. "On the fly" continuous generation of alginate fibers using a microfluidic device. Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection. He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108 [TBL] [Abstract][Full Text] [Related]
8. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141 [TBL] [Abstract][Full Text] [Related]
9. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential. Angelozzi M; Miotto M; Penolazzi L; Mazzitelli S; Keane T; Badylak SF; Piva R; Nastruzzi C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():141-53. PubMed ID: 26249575 [TBL] [Abstract][Full Text] [Related]
10. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Ren PW; Ju XJ; Xie R; Chu LY J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224 [TBL] [Abstract][Full Text] [Related]
11. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Keshaw H; Forbes A; Day RM Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644 [TBL] [Abstract][Full Text] [Related]
12. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels. Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892 [TBL] [Abstract][Full Text] [Related]
14. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
15. A First Step in De Novo Synthesis of a Living Pulp Tissue Replacement Using Dental Pulp MSCs and Tissue Growth Factors, Encapsulated within a Bioinspired Alginate Hydrogel. Bhoj M; Zhang C; Green DW J Endod; 2015 Jul; 41(7):1100-7. PubMed ID: 25958179 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers. Takei T; Sakai S; Yokonuma T; Ijima H; Kawakami K Biotechnol Prog; 2007; 23(1):182-6. PubMed ID: 17269686 [TBL] [Abstract][Full Text] [Related]
19. The application of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. Lin YH; Yang YW; Chen YD; Wang SS; Chang YH; Wu MH Lab Chip; 2012 Mar; 12(6):1164-73. PubMed ID: 22322420 [TBL] [Abstract][Full Text] [Related]
20. Design of capillary microfluidics for spinning cell-laden microfibers. Yu Y; Shang L; Guo J; Wang J; Zhao Y Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]