These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28485423)
1. Thermal conductivity of Bi Muñoz Rojo M; Abad B; Manzano CV; Torres P; Cartoixà X; Alvarez FX; Martín Gonzalez M Nanoscale; 2017 May; 9(20):6741-6747. PubMed ID: 28485423 [TBL] [Abstract][Full Text] [Related]
2. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires. Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577 [TBL] [Abstract][Full Text] [Related]
3. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires. Wan W; Xiong B; Zhang W; Feng J; Wang E J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956 [TBL] [Abstract][Full Text] [Related]
4. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering. Zhou Y; Zhang X; Hu M Nano Lett; 2017 Feb; 17(2):1269-1276. PubMed ID: 28128960 [TBL] [Abstract][Full Text] [Related]
5. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. Martin P; Aksamija Z; Pop E; Ravaioli U Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295 [TBL] [Abstract][Full Text] [Related]
6. Phonon spectroscopy in a Bi2Te3 nanowire array. Bessas D; Töllner W; Aabdin Z; Peranio N; Sergueev I; Wille HC; Eibl O; Nielsch K; Hermann RP Nanoscale; 2013 Nov; 5(21):10629-35. PubMed ID: 24056869 [TBL] [Abstract][Full Text] [Related]
7. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects. Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412 [TBL] [Abstract][Full Text] [Related]
8. Role of the phonon confinement effect and boundary scattering in reducing the thermal conductivity of argon nanowire. Tretiakov KV; Hyżorek K J Chem Phys; 2021 Feb; 154(5):054702. PubMed ID: 33557530 [TBL] [Abstract][Full Text] [Related]
9. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires. Ghossoub MG; Valavala KV; Seong M; Azeredo B; Hsu K; Sadhu JS; Singh PK; Sinha S Nano Lett; 2013 Apr; 13(4):1564-71. PubMed ID: 23464810 [TBL] [Abstract][Full Text] [Related]
10. Thermal conductivity in porous silicon nanowire arrays. Weisse JM; Marconnet AM; Kim DR; Rao PM; Panzer MA; Goodson KE; Zheng X Nanoscale Res Lett; 2012 Oct; 7(1):554. PubMed ID: 23039084 [TBL] [Abstract][Full Text] [Related]
11. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures. Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254 [TBL] [Abstract][Full Text] [Related]
12. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires. Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197 [TBL] [Abstract][Full Text] [Related]
13. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
14. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires. Qu X; Gu J RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690 [TBL] [Abstract][Full Text] [Related]
15. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires. Malhotra A; Maldovan M Sci Rep; 2016 May; 6():25818. PubMed ID: 27174699 [TBL] [Abstract][Full Text] [Related]
16. Impact of pore anisotropy on the thermal conductivity of porous Si nanowires. Ferrando-Villalba P; D'Ortenzi L; Dalkiranis GG; Cara E; Lopeandia AF; Abad L; Rurali R; Cartoixà X; De Leo N; Saghi Z; Jacob M; Gambacorti N; Boarino L; Rodríguez-Viejo J Sci Rep; 2018 Aug; 8(1):12796. PubMed ID: 30143650 [TBL] [Abstract][Full Text] [Related]
17. Efficient mechanical modulation of the phonon thermal conductivity of Mo Xu K; Deng S; Liang T; Cao X; Han M; Zeng X; Zhang Z; Yang N; Wu J Nanoscale; 2022 Feb; 14(8):3078-3086. PubMed ID: 35138319 [TBL] [Abstract][Full Text] [Related]
18. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related]
19. Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires. Shin HS; Jeon SG; Yu J; Kim YS; Park HM; Song JY Nanoscale; 2014 Jun; 6(11):6158-65. PubMed ID: 24788482 [TBL] [Abstract][Full Text] [Related]
20. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA Nat Commun; 2013; 4():1640. PubMed ID: 23535661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]