BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28485535)

  • 1. Reversible Stabilization of Vesicles: Redox-Responsive Polymer Nanocontainers for Intracellular Delivery.
    de Vries WC; Grill D; Tesch M; Ricker A; Nüsse H; Klingauf J; Studer A; Gerke V; Ravoo BJ
    Angew Chem Int Ed Engl; 2017 Aug; 56(32):9603-9607. PubMed ID: 28485535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric Nanocarriers Based on Cyclodextrins for Drug Delivery: Host-Guest Interaction as Stimuli Responsive Linker.
    Peng L; Liu S; Feng A; Yuan J
    Mol Pharm; 2017 Aug; 14(8):2475-2486. PubMed ID: 28463008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Recognition and Immobilization of Ligand-Conjugated Redox-Responsive Polymer Nanocontainers.
    de Vries WC; Tesch M; Studer A; Ravoo BJ
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41760-41766. PubMed ID: 29140078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus-Responsive Assembly of Nanoparticles using Host-Guest Interactions of Cyclodextrins.
    Engel S; Möller N; Ravoo BJ
    Chemistry; 2018 Apr; 24(19):4741-4748. PubMed ID: 29251371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-Responsive Polymer with Self-Immolative Linkers for the Release of Payloads.
    Iamsaard S; Seidi F; Dararatana N; Crespy D
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800071. PubMed ID: 29748982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-tumor drug delivery system based on cyclodextrin-containing pH-responsive star polymer: in vitro and in vivo evaluation.
    Xiong Q; Zhang M; Zhang Z; Shen W; Liu L; Zhang Q
    Int J Pharm; 2014 Oct; 474(1-2):232-40. PubMed ID: 25149124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-responsive vesicles prepared from supramolecular cyclodextrin amphiphiles.
    Zhang H; An W; Liu Z; Hao A; Hao J; Shen J; Zhao X; Sun H; Sun L
    Carbohydr Res; 2010 Jan; 345(1):87-96. PubMed ID: 19926079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Responsive Self-Assembly Micelles from Poly(N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers.
    Xu F; Li H; Luo YL; Tang W
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5181-5192. PubMed ID: 28097871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release.
    Zhang K; Liu J; Guo Y; Li Y; Ma X; Lei Z
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():1-9. PubMed ID: 29549937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adamantane-Terminated Polypeptides: Synthesis by N-Carboxyanhydride Polymerization and Template-Based Self-Assembly of Responsive Nanocontainers via Host-Guest Complexation with β-Cyclodextrin.
    Pottanam Chali S; Ravoo BJ
    Macromol Rapid Commun; 2020 Sep; 41(18):e2000049. PubMed ID: 32419159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin containing biodegradable particles: from preparation to drug delivery applications.
    Zafar N; Fessi H; Elaissari A
    Int J Pharm; 2014 Jan; 461(1-2):351-66. PubMed ID: 24342710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T₂ MRI and Drug Delivery.
    Qin J; Liu Q; Zhang J; Chen J; Chen S; Zhao Y; Du J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14043-52. PubMed ID: 26046951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Cellular Delivery of Amphiphilic Cargo by Redox-Responsive Nanocontainers.
    de Vries WC; Kudruk S; Grill D; Niehues M; Matos ALL; Wissing M; Studer A; Gerke V; Ravoo BJ
    Adv Sci (Weinh); 2019 Dec; 6(24):1901935. PubMed ID: 31871866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer Nanocontainers for Intracellular Delivery.
    Pottanam Chali S; Ravoo BJ
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):2962-2972. PubMed ID: 31364243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery.
    Gao Y; Li G; Zhou Z; Guo L; Liu X
    Colloids Surf B Biointerfaces; 2017 Dec; 160():364-371. PubMed ID: 28963957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart nanocontainers: progress on novel stimuli-responsive polymer vesicles.
    Feng A; Yuan J
    Macromol Rapid Commun; 2014 Apr; 35(8):767-79. PubMed ID: 24522966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules.
    Zhang J; Liu Y; Yuan B; Wang Z; Schönhoff M; Zhang X
    Chemistry; 2012 Nov; 18(47):14968-73. PubMed ID: 23112102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications.
    Hu QD; Tang GP; Chu PK
    Acc Chem Res; 2014 Jul; 47(7):2017-25. PubMed ID: 24873201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEGylated hyperbranched polyphosphoester based nanocarriers for redox-responsive delivery of doxorubicin.
    Chen C; Zheng P; Cao Z; Ma Y; Li J; Qian H; Tao W; Yang X
    Biomater Sci; 2016 Mar; 4(3):412-7. PubMed ID: 26626655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.