These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28485603)

  • 21. Alkyne Semihydrogenation with a Well-Defined Nonclassical Co-H
    Tokmic K; Fout AR
    J Am Chem Soc; 2016 Oct; 138(41):13700-13705. PubMed ID: 27709917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enabling Semihydrogenation of Alkynes to Alkenes by Using a Calcium Palladium Complex Hydride.
    Guo Q; Chen R; Guo J; Qin C; Xiong Z; Yan H; Gao W; Pei Q; Wu A; Chen P
    J Am Chem Soc; 2021 Dec; 143(49):20891-20897. PubMed ID: 34854674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple and efficient
    Park BY; Lim T; Han MS
    Chem Commun (Camb); 2021 Jul; 57(56):6891-6894. PubMed ID: 34151329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. E- and Z-Selective Transfer Semihydrogenation of Alkynes Catalyzed by Standard Ruthenium Olefin Metathesis Catalysts.
    Kusy R; Grela K
    Org Lett; 2016 Dec; 18(23):6196-6199. PubMed ID: 27934375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silica-Supported Cu Nanoparticle Catalysts for Alkyne Semihydrogenation: Effect of Ligands on Rates and Selectivity.
    Fedorov A; Liu HJ; Lo HK; Copéret C
    J Am Chem Soc; 2016 Dec; 138(50):16502-16507. PubMed ID: 27998097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Z-Selective Copper(I)-Catalyzed Alkyne Semihydrogenation with Tethered Cu-Alkoxide Complexes.
    Pape F; Thiel NO; Teichert JF
    Chemistry; 2015 Nov; 21(45):15934-8. PubMed ID: 26395782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne
    Huang Z; Wang Y; Leng X; Huang Z
    J Am Chem Soc; 2021 Mar; 143(12):4824-4836. PubMed ID: 33724813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Proton Reduction over Nickel Foam for Z-Stereoselective Semihydrogenation/deuteration of Functionalized Alkynes.
    Valiente A; Martínez-Pardo P; Kaur G; Johansson MJ; Martín-Matute B
    ChemSusChem; 2022 Jan; 15(1):e202102221. PubMed ID: 34738723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts.
    Schütte K; Doddi A; Kroll C; Meyer H; Wiktor C; Gemel C; van Tendeloo G; Fischer RA; Janiak C
    Nanoscale; 2014 May; 6(10):5532-44. PubMed ID: 24733576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Well-Defined Rhodium-Gallium Catalytic Sites in a Metal-Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes.
    Desai SP; Ye J; Zheng J; Ferrandon MS; Webber TE; Platero-Prats AE; Duan J; Garcia-Holley P; Camaioni DM; Chapman KW; Delferro M; Farha OK; Fulton JL; Gagliardi L; Lercher JA; Penn RL; Stein A; Lu CC
    J Am Chem Soc; 2018 Nov; 140(45):15309-15318. PubMed ID: 30352506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic Chemoselective and Stereoselective Semihydrogenation of Alkynes to E-Alkenes Using the Combination of Pd Catalyst and ZnI
    Maazaoui R; Abderrahim R; Chemla F; Ferreira F; Perez-Luna A; Jackowski O
    Org Lett; 2018 Dec; 20(23):7544-7549. PubMed ID: 30489087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ruthenium-Catalyzed
    Ekebergh A; Begon R; Kann N
    J Org Chem; 2020 Mar; 85(5):2966-2975. PubMed ID: 32027128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyhedral Cu
    Rej S; Madasu M; Tan CS; Hsia CF; Huang MH
    Chem Sci; 2018 Mar; 9(9):2517-2524. PubMed ID: 29732129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct generation of polypyrrole-coated palladium nanoparticles inside a metal-organic framework for a semihydrogenation catalyst.
    Takashima Y; Tetsusashi S; Tanaka S; Tsuruoka T; Akamatsu K
    RSC Adv; 2023 Mar; 13(11):7464-7467. PubMed ID: 36908529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition-metal-free semihydrogenation of diarylalkynes: highly stereoselective synthesis of trans-alkenes using Na2S·9H2O.
    Chen Z; Luo M; Wen Y; Luo G; Liu L
    Org Lett; 2014 Jun; 16(11):3020-3. PubMed ID: 24848154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ generated bulky palladium hydride complexes as catalysts for the efficient isomerization of olefins. Selective transformation of terminal alkenes to 2-alkenes.
    Gauthier D; Lindhardt AT; Olsen EP; Overgaard J; Skrydstrup T
    J Am Chem Soc; 2010 Jun; 132(23):7998-8009. PubMed ID: 20481527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions.
    Ogasawara S; Kato S
    J Am Chem Soc; 2010 Apr; 132(13):4608-13. PubMed ID: 20225817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protocol for (E)-selective semihydrogenation of alkynes using iridium-based catalyst.
    Kusy R; Grela K
    STAR Protoc; 2023 Dec; 4(4):102579. PubMed ID: 37733598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application.
    Dedzo GK; Ngnie G; Detellier C
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4862-9. PubMed ID: 26824252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.