These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2848566)

  • 1. Resorbable structured porous materials in the healing process of hard tissue defects.
    Jamshidi K; Shimizu T; Usui Y; Eberhart RC; Mooney V
    ASAIO Trans; 1988; 34(3):755-60. PubMed ID: 2848566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone ingrowth into polymer coated porous synthetic coralline hydroxyapatite.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    J Orthop Res; 1987; 5(2):275-82. PubMed ID: 3572596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute.
    Shimazaki K; Mooney V
    J Orthop Res; 1985; 3(3):301-10. PubMed ID: 2411894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap healing enhanced by hydroxyapatite coating in dogs.
    Søballe K; Hansen ES; Brockstedt-Rasmussen H; Hjortdal VE; Juhl GI; Pedersen CM; Hvid I; Bünger C
    Clin Orthop Relat Res; 1991 Nov; (272):300-7. PubMed ID: 1657476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system.
    Cook SD; Thomas KA; Kay JF; Jarcho M
    Clin Orthop Relat Res; 1988 May; (230):303-12. PubMed ID: 2835198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healing of osteochondral osteotomies after fixation with a hydroxyapatite-buffered polylactide. A histomorphometric and radiographic study in rabbits.
    Lewandrowski KU; Bondre SP; Wise DL; Trantolo DJ
    Biomed Mater Eng; 2002; 12(3):259-70. PubMed ID: 12446941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).
    Tamai N; Myoui A; Hirao M; Kaito T; Ochi T; Tanaka J; Takaoka K; Yoshikawa H
    Osteoarthritis Cartilage; 2005 May; 13(5):405-17. PubMed ID: 15882564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive properties of polymer coated synthetic hydroxyapatite for bone grafting.
    Tencer AF; Mooney V; Brown KL; Silva PA
    J Biomed Mater Res; 1985 Oct; 19(8):957-69. PubMed ID: 2854131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different effects of mechanical vibration on bone ingrowth into porous hydroxyapatite and fracture healing in a rabbit model.
    Usui Y; Zerwekh JE; Vanharanta H; Ashman RB; Mooney V
    J Orthop Res; 1989; 7(4):559-67. PubMed ID: 2544710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits.
    Piattelli M; Scarano A; Paolantonio M; Iezzi G; Petrone G; Piattelli A
    J Oral Implantol; 2002; 28(1):2-8. PubMed ID: 12498456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The interface between hydroxyapatite ceramic and newly formed bone in scanning electron microscopy].
    Brill W; Katthagen BD
    Z Orthop Ihre Grenzgeb; 1987; 125(2):183-7. PubMed ID: 3039750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The restoration of the articular surfaces overlying Replamineform porous biomaterials.
    Chiroff RT; White RA; White EW; Weber JN; Roy D
    J Biomed Mater Res; 1977 Mar; 11(2):165-78. PubMed ID: 67115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bone ingrowth and fixation strength with hydroxyapatite-coated porous implants.
    Cook SD; Thomas KA; Dalton JE; Kay JF
    Semin Arthroplasty; 1991 Oct; 2(4):268-79. PubMed ID: 10171176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study.
    Schliephake H; Neukam FW; Klosa D
    Int J Oral Maxillofac Surg; 1991 Feb; 20(1):53-8. PubMed ID: 1850445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative screening of engineered implants in a long bone defect model in rabbits.
    Bakker AD; Schrooten J; van Cleynenbreugel T; Vanlauwe J; Luyten J; Schepers E; Dubruel P; Schacht E; Lammens J; Luyten FP
    Tissue Eng Part C Methods; 2008 Sep; 14(3):251-60. PubMed ID: 18781837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone attachment to hydroxyapatite coated polymers.
    Boone PS; Zimmerman MC; Gutteling E; Lee CK; Parsons JR; Langrana N
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):183-99. PubMed ID: 2674147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxylapatite coating of porous implants improves bone ingrowth and interface attachment strength.
    Cook SD; Thomas KA; Dalton JE; Volkman TK; Whitecloud TS; Kay JF
    J Biomed Mater Res; 1992 Aug; 26(8):989-1001. PubMed ID: 1429760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.