These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 28485742)

  • 1. Catalytically active and chemically inert CdIn
    Song JP; Yin PF; Mao J; Qiao SZ; Du XW
    Nanoscale; 2017 May; 9(19):6296-6301. PubMed ID: 28485742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Sb
    Chen Y; Cheng Y; Zhao J; Zhang W; Gao J; Miao H; Hu X
    J Colloid Interface Sci; 2022 Dec; 627():1047-1060. PubMed ID: 35908309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-powered photoanode-supported photoelectrochemical immunosensor for CYFRA 21-1 detection based on In
    Wu T; Feng J; Zhang S; Liu L; Ren X; Fan D; Kuang X; Sun X; Wei Q; Ju H
    Biosens Bioelectron; 2020 Dec; 169():112580. PubMed ID: 32911316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation.
    Vaddipalli SR; Sanivarapu SR; Vengatesan S; Lawrence JB; Eashwar M; Sreedhar G
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23049-59. PubMed ID: 27532805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell.
    Pareek A; Paik P; Borse PH
    Langmuir; 2014 Dec; 30(51):15540-9. PubMed ID: 25458461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile approaching hierarchical CdS films as electrode toward photoelectrochemical water splitting.
    Guo X; Zhu J; Wei H; Lee ST; Li Y; Tang J
    Nanotechnology; 2015 Jan; 26(1):015203. PubMed ID: 25493339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small molecular amine mediated synthesis of hydrophilic CdS nanorods and their photoelectrochemical water splitting performance.
    Bao C; Zhu G; Yang J; Liu M; Zhang R; Shen X
    Dalton Trans; 2015 Jan; 44(3):1465-72. PubMed ID: 25512238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CdS-modified TiO(2) nanocrystalline photoanode for efficient hydrogen generation by visible light.
    Chi CF; Lee YL; Weng HS
    Nanotechnology; 2008 Mar; 19(12):125704. PubMed ID: 21817745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H
    Ma Y; Liu Y; Bian Y; Zhu A; Yang Y; Pan J
    J Colloid Interface Sci; 2018 May; 518():140-148. PubMed ID: 29453104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured TaON/Ta
    Pei L; Wang H; Wang X; Xu Z; Yan S; Zou Z
    Dalton Trans; 2018 Jul; 47(27):8949-8955. PubMed ID: 29922786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-step electrodeposition to fabricate the p-n heterojunction of a Cu
    Bai S; Liu J; Cui M; Luo R; He J; Chen A
    Dalton Trans; 2018 May; 47(19):6763-6771. PubMed ID: 29717319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved stoichiometry and photoanode efficiency of thermally evaporated CdS film with quantum dots as precursor.
    Fan L; Wang P; Guo Q; Lei Y; Li M; Han H; Zhao H; Yang D; Zheng Z; Yang J
    Nanotechnology; 2015 Aug; 26(33):335606. PubMed ID: 26221785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Photoelectrochemical Solar Cell Consisting of a Cadmium Sulfide Photoanode and a Ruthenium-2,2'-Bipyridine Redox Shuttle in a Non-aqueous Electrolyte.
    Kageshima Y; Kumagai H; Minegishi T; Kubota J; Domen K
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7877-81. PubMed ID: 26014677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell.
    Pareek A; Paik P; Borse PH
    Dalton Trans; 2016 Jul; 45(27):11120-8. PubMed ID: 27327992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.