These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28485962)

  • 1. Collisional Intermolecular Energy Transfer from a N
    Paul AK; Donzis D; Hase WL
    J Phys Chem A; 2017 Jun; 121(21):4049-4057. PubMed ID: 28485962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified model for simulating liquid and gas phase, intermolecular energy transfer: N₂ + C₆F₆ collisions.
    Paul AK; Kohale SC; Pratihar S; Sun R; North SW; Hase WL
    J Chem Phys; 2014 May; 140(19):194103. PubMed ID: 24852526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.
    Paul AK; West NA; Winner JD; Bowersox RDW; North SW; Hase WL
    J Chem Phys; 2018 Oct; 149(13):134101. PubMed ID: 30292226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.
    Kim H; Paul AK; Pratihar S; Hase WL
    J Phys Chem A; 2016 Jul; 120(27):5187-96. PubMed ID: 27182630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of intermolecular energy transfer from vibrationally excited benzene in mixed nitrogen-benzene baths at 140 K and 300 K.
    Ahamed SS; Kim H; Paul AK; West NA; Winner JD; Donzis DA; North SW; Hase WL
    J Chem Phys; 2020 Oct; 153(14):144116. PubMed ID: 33086796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Dynamics Simulation of Energy Transfer: Propylbenzene Cation and N
    Kim H; Bhandari HN; Pratihar S; Hase WL
    J Phys Chem A; 2019 Mar; 123(12):2301-2309. PubMed ID: 30794410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the energy and temperature dependence of C6H6 (∗) collisional relaxation via time-dependent bath temperature measurements.
    West NA; Winner JD; Bowersox RD; North SW
    J Chem Phys; 2016 Jul; 145(1):014308. PubMed ID: 27394109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath.
    Rivera-Rivera LA; Wagner AF; Perry JW
    J Chem Phys; 2019 Jul; 151(3):034303. PubMed ID: 31325951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Competition between Dissociation Pathway and Energy Transfer Pathway: Unimolecular Dissociation of a Benzene-Hexafluorobenzene Complex in Nitrogen Bath.
    Ahamed SS; Mahanta H; Paul AK
    J Phys Chem A; 2019 Dec; 123(50):10663-10675. PubMed ID: 31755713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of projectile and surface temperatures in the energy transfer dynamics of protonated peptide ion collisions with the diamond {111} surface.
    Rahaman A; Collins O; Scott C; Wang J; Hase WL
    J Phys Chem A; 2006 Jul; 110(27):8418-22. PubMed ID: 16821824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA; Kim K; Mayhew M; Mitchell DG; Sevy ET
    J Phys Chem A; 2008 Mar; 112(12):2543-52. PubMed ID: 18321080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar.
    Wang H; Wen K; You X; Mao Q; Luo KH; Pilling MJ; Robertson SH
    J Chem Phys; 2019 Jul; 151(4):044301. PubMed ID: 31370521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is CH
    Jayee B; Malpathak S; Ma X; Hase WL
    J Chem Phys; 2019 Nov; 151(18):184110. PubMed ID: 31731854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Better Understanding of the Unimolecular Dissociation Dynamics of Weakly Bound Aromatic Compounds at High Temperature: A Study on C
    Mahanta H; Baishya D; Ahamed SS; Paul AK
    J Phys Chem A; 2019 Apr; 123(13):2517-2526. PubMed ID: 30848910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules.
    Barker JR; Weston RE
    J Phys Chem A; 2010 Oct; 114(39):10619-33. PubMed ID: 20843047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.
    Bender JD; Valentini P; Nompelis I; Paukku Y; Varga Z; Truhlar DG; Schwartzentruber T; Candler GV
    J Chem Phys; 2015 Aug; 143(5):054304. PubMed ID: 26254650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.