BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28485990)

  • 21. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study.
    da Silva EB; Lessl JT; Wilkie AC; Liu X; Liu Y; Ma LQ
    Chemosphere; 2018 Sep; 206():736-741. PubMed ID: 29793065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.
    de Oliveira LM; Suchismita D; Gress J; Rathinasabapathi B; Chen Y; Ma LQ
    Chemosphere; 2017 Jun; 176():249-254. PubMed ID: 28273532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.
    Yan X; Liu Q; Wang J; Liao X
    J Environ Sci (China); 2017 Jul; 57():104-109. PubMed ID: 28647229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal uptake and translocation by Chinese brake fern (Pteris vittata) and diversity of rhizosphere microbial communities under single and combined arsenic and cadmium stress.
    Cui S; Xiao H; Miao D; Yang W
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85198-85209. PubMed ID: 37380855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the effectiveness and salt stress of Pteris vittata in the remediation of arsenic contamination caused by tsunami sediments.
    Sugawara K; Kobayashi A; Endo G; Hatayama M; Inoue C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(14):1631-8. PubMed ID: 25320850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic.
    Li A; Lu Y; Zhen D; Guo Z; Wang G; Shi K; Liao S
    Chemosphere; 2023 Jul; 329():138663. PubMed ID: 37044144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Phytoremediation Potential of Pteris vittata L. on Arsenic Contaminated Soil Using Allium cepa Bioassay.
    Gupta K; Srivastava S; Saxena G; Kumar A
    Bull Environ Contam Toxicol; 2022 Mar; 108(3):423-429. PubMed ID: 34170357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration.
    Wan XM; Lei M; Liu YR; Huang ZC; Chen TB; Gao D
    Sci Total Environ; 2013 Jan; 442():143-51. PubMed ID: 23178774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site.
    Niazi NK; Singh B; Van Zwieten L; Kachenko AG
    Int J Phytoremediation; 2011 Oct; 13(9):912-32. PubMed ID: 21972513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The arsenic hyperaccumulator fern Pteris vittata L.
    Xie QE; Yan XL; Liao XY; Li X
    Environ Sci Technol; 2009 Nov; 43(22):8488-95. PubMed ID: 20028042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [As-hyperaccumulation of Pteris vittata L. as influenced by as concentrations in soils of contaminated fields].
    Liu YR; Chen TB; Huang ZC; Liao XY
    Huan Jing Ke Xue; 2005 Sep; 26(5):181-6. PubMed ID: 16366495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.
    Han YH; Yang GM; Fu JW; Guan DX; Chen Y; Ma LQ
    Chemosphere; 2016 Apr; 149():366-72. PubMed ID: 26874625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant
    Abou-Shanab RAI; Santelli CM; Sadowsky MJ
    Int J Phytoremediation; 2022; 24(4):420-428. PubMed ID: 34334062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L.
    Yang Q; Tu S; Wang G; Liao X; Yan X
    Int J Phytoremediation; 2012 Jan; 14(1):89-99. PubMed ID: 22567697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical transformations of arsenic in the rhizosphere-root interface of Pityrogramma calomelanos and Pteris vittata.
    Corzo Remigio A; Harris HH; Paterson DJ; Edraki M; van der Ent A
    Metallomics; 2023 Aug; 15(8):. PubMed ID: 37528060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
    Gonzaga MI; Ma LQ; Pacheco EP; dos Santos WM
    Int J Phytoremediation; 2012 Dec; 14(10):939-49. PubMed ID: 22908656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhizosphere interactions between PAH-degrading bacteria and Pteris vittata L. on arsenic and phenanthrene dynamics and transformation.
    Sun L; Zhu G; Liao X
    Chemosphere; 2021 Dec; 285():131415. PubMed ID: 34265710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.