BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28486114)

  • 21. Treatment of photosensitive epilepsy using coloured glasses.
    Wilkins AJ; Baker A; Amin D; Smith S; Bradford J; Zaiwalla Z; Besag FM; Binnie CD; Fish D
    Seizure; 1999 Dec; 8(8):444-9. PubMed ID: 10627405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurofeedback Training of Gamma Oscillations in Monkey Primary Visual Cortex.
    Chauvière L; Singer W
    Cereb Cortex; 2019 Dec; 29(11):4785-4802. PubMed ID: 30796824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The visual cortex produces gamma band echo in response to broadband visual flicker.
    Zhigalov A; Duecker K; Jensen O
    PLoS Comput Biol; 2021 Jun; 17(6):e1009046. PubMed ID: 34061835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.
    Jerath R; Cearley SM; Barnes VA; Jensen M
    Med Hypotheses; 2018 Jan; 110():71-75. PubMed ID: 29317073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epileptic syndromes and visually induced seizures.
    Guerrini R; Genton P
    Epilepsia; 2004; 45 Suppl 1():14-8. PubMed ID: 14706039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reflex epilepsy and reflex seizures of the visual system: a clinical review.
    Zifkin BG; Kasteleijn-Nolst Trenité D
    Epileptic Disord; 2000 Sep; 2(3):129-36. PubMed ID: 11022137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.
    Orekhova EV; Sysoeva OV; Schneiderman JF; Lundström S; Galuta IA; Goiaeva DE; Prokofyev AO; Riaz B; Keeler C; Hadjikhani N; Gillberg C; Stroganova TA
    Sci Rep; 2018 May; 8(1):8451. PubMed ID: 29855596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency specific spatial interactions in human electrocorticography: V1 alpha oscillations reflect surround suppression.
    Harvey BM; Vansteensel MJ; Ferrier CH; Petridou N; Zuiderbaan W; Aarnoutse EJ; Bleichner MG; Dijkerman HC; van Zandvoort MJ; Leijten FS; Ramsey NF; Dumoulin SO
    Neuroimage; 2013 Jan; 65():424-32. PubMed ID: 23085107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting gamma frequency activity during human memory processing.
    Kucewicz MT; Berry BM; Kremen V; Brinkmann BH; Sperling MR; Jobst BC; Gross RE; Lega B; Sheth SA; Stein JM; Das SR; Gorniak R; Stead SM; Rizzuto DS; Kahana MJ; Worrell GA
    Brain; 2017 May; 140(5):1337-1350. PubMed ID: 28335018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception?
    Parra J; Kalitzin SN; Iriarte J; Blanes W; Velis DN; Lopes da Silva FH
    Brain; 2003 May; 126(Pt 5):1164-72. PubMed ID: 12690055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance.
    Herring JD; Esterer S; Marshall TR; Jensen O; Bergmann TO
    Neuroimage; 2019 Jan; 184():440-449. PubMed ID: 30243972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry.
    Welle CG; Contreras D
    J Neurophysiol; 2016 Apr; 115(4):1821-35. PubMed ID: 26719085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High frequency oscillations as a correlate of visual perception.
    Martinovic J; Busch NA
    Int J Psychophysiol; 2011 Jan; 79(1):32-8. PubMed ID: 20654659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural gain control measured through cortical gamma oscillations is associated with sensory sensitivity.
    Orekhova EV; Stroganova TA; Schneiderman JF; Lundström S; Riaz B; Sarovic D; Sysoeva OV; Brant G; Gillberg C; Hadjikhani N
    Hum Brain Mapp; 2019 Apr; 40(5):1583-1593. PubMed ID: 30549144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations.
    Friedman-Hill S; Maldonado PE; Gray CM
    Cereb Cortex; 2000 Nov; 10(11):1105-16. PubMed ID: 11053231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period.
    Chen G; Rasch MJ; Wang R; Zhang XH
    Sci Rep; 2015 Dec; 5():17847. PubMed ID: 26648548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Video games are exciting: a European study of video game-induced seizures and epilepsy.
    Kasteleijn-Nolst Trenité DG; Martins da Silva A; Ricci S; Rubboli G; Tassinari CA; Lopes J; Bettencourt M; Oosting J; Segers JP
    Epileptic Disord; 2002 Jun; 4(2):121-8. PubMed ID: 12105074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new adaptive temporal filter: application to photosensitive seizure patients.
    Nomura M; Takahashi T; Kamijo K; Yamazaki T
    Psychiatry Clin Neurosci; 2000 Dec; 54(6):685-90. PubMed ID: 11145469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuronal synchrony and the transition to spontaneous seizures.
    Grasse DW; Karunakaran S; Moxon KA
    Exp Neurol; 2013 Oct; 248():72-84. PubMed ID: 23707218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of video-game epilepsy.
    Fylan F; Harding GF; Edson AS; Webb RM
    Epilepsia; 1999; 40 Suppl 4():28-30. PubMed ID: 10487170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.