BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28486214)

  • 1. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
    Famulari G; Pater P; Enger SA
    Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of microdosimetric spectra for protons using Geant4-DNA and a
    Mokari M; Moeini H; Soleimani M
    Int J Radiat Biol; 2021; 97(2):208-218. PubMed ID: 33253606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code.
    Margis S; Magouni M; Kyriakou I; Georgakilas AG; Incerti S; Emfietzoglou D
    Phys Med Biol; 2020 Feb; 65(4):045007. PubMed ID: 31935692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry.
    Šefl M; Incerti S; Papamichael G; Emfietzoglou D
    Appl Radiat Isot; 2015 Oct; 104():113-23. PubMed ID: 26159660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA.
    Kyriakou I; Tremi I; Georgakilas AG; Emfietzoglou D
    Appl Radiat Isot; 2021 Jun; 172():109654. PubMed ID: 33676082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of Geant4-DNA toolkit parameters on electron microdosimetric track structure.
    Wang Y; Li Z; Zhang S; Tang W; Li X; Chen D; Sun L
    J Radiat Res; 2020 Jan; 61(1):58-67. PubMed ID: 31846034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-mean lineal energy values for electrons by different Monte Carlo codes: Consequences for estimates of radiation quality in photon beams.
    Lindborg L; Lillhök J; Kyriakou I; Emfietzoglou D
    Med Phys; 2022 Feb; 49(2):1286-1296. PubMed ID: 34905630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study.
    Famulari G; Pater P; Enger SA
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):270-277. PubMed ID: 29102279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo calculation of beam quality correction factors in proton beams using TOPAS/GEANT4.
    Baumann KS; Kaupa S; Bach C; Engenhart-Cabillic R; Zink K
    Phys Med Biol; 2020 Mar; 65(5):055015. PubMed ID: 31962306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdosimetry of low-energy electrons.
    Liamsuwan T; Emfietzoglou D; Uehara S; Nikjoo H
    Int J Radiat Biol; 2012 Dec; 88(12):899-907. PubMed ID: 22668077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M
    Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
    Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S
    Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code.
    Vassiliev ON
    Phys Med Biol; 2012 Feb; 57(4):1087-94. PubMed ID: 22297165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
    Wulff J; Baumann KS; Verbeek N; Bäumer C; Timmermann B; Zink K
    Phys Med Biol; 2018 Jun; 63(11):115013. PubMed ID: 29737969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction factors to convert microdosimetry measurements in silicon to tissue in
    Bolst D; Guatelli S; Tran LT; Chartier L; Lerch ML; Matsufuji N; Rosenfeld AB
    Phys Med Biol; 2017 Mar; 62(6):2055-2069. PubMed ID: 28151733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics.
    Carrier JF; Archambault L; Beaulieu L; Roy R
    Med Phys; 2004 Mar; 31(3):484-92. PubMed ID: 15070244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.