These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28486405)

  • 1. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.
    Vornicu I; Carmona-Galán R; Rodríguez-Vázquez Á
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28486405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Multi-Pixel Photon-to-Digital Converter for Time-Bin Quantum Key Distribution.
    Carrier S; Labrecque-Dias M; Tannous R; Gendron P; Nolet F; Roy N; Rossignol T; Vachon F; Parent S; Jennewein T; Charlebois S; Pratte JF
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 13-Bit, 12-ps Resolution Vernier Time-to-Digital Converter Based on Dual Delay-Rings for SPAD Image Sensor.
    Huang Z; Huang J; Tian L; Wang N; Zhu Y; Wang H; Feng S
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutually Coupled Time-to-Digital Converters (TDCs) for Direct Time-of-Flight (dTOF) Image Sensors.
    Ximenes AR; Padmanabhan P; Charbon E
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Low-Resources TDC for Multi-Channel Direct ToF Readout Based on a 28-nm FPGA.
    Parsakordasiabi M; Vornicu I; Rodríguez-Vázquez Á; Carmona-Galán R
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33466355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.
    Schwartz DE; Charbon E; Shepard KL
    IEEE J Solid-State Circuits; 2008 Nov; 43(11):2546-2557. PubMed ID: 23976789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMOS Time-to-Digital Converters for Biomedical Imaging Applications.
    Scott R; Jiang W; Deen MJ
    IEEE Rev Biomed Eng; 2023; 16():627-652. PubMed ID: 34166201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced single-photon time-of-flight 3D ranging.
    Lussana R; Villa F; Dalla Mora A; Contini D; Tosi A; Zappa F
    Opt Express; 2015 Sep; 23(19):24962-73. PubMed ID: 26406696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor.
    Hirose Y; Koyama S; Ishii M; Saitou S; Takemoto M; Nose Y; Inoue A; Sakata Y; Sugiura Y; Kabe T; Usuda M; Kasuga S; Mori M; Odagawa A; Tanaka T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dToF Ranging Sensor with Accurate Photon Detector Measurements for LiDAR Applications.
    Yu H; Wang L; Xu J; Chiang PY
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Analysis of a Direct Time-of-Flight Sensor Architecture for LiDAR Applications.
    Padmanabhan P; Zhang C; Charbon E
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors.
    Perenzoni M; Pancheri L; Stoppa D
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An 8.8 ps RMS Resolution Time-To-Digital Converter Implemented in a 60 nm FPGA with Real-Time Temperature Correction.
    Song Z; Zhao Z; Yu H; Yang J; Zhang X; Sui T; Xu J; Xie S; Huang Q; Peng Q
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a p+/n-well SPAD array in 150nm CMOS process.
    Xu H; Pancheri L; Betta GD; Stoppa D
    Opt Express; 2017 May; 25(11):12765-12778. PubMed ID: 28786630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method to Correct the Temporal Drift of Single-Photon Detectors Based on Asynchronous Quantum Ghost Imaging.
    Pitsch C; Walter D; Gasparini L; Bürsing H; Eichhorn M
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spot Tracking and TDC Sharing in SPAD Arrays for TOF LiDAR.
    Sesta V; Severini F; Villa F; Lussana R; Zappa F; Nakamuro K; Matsui Y
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-laser source interference suppression using the time-coding method for SPAD-based flash DToF systems.
    Sun M; Wang H; Xu J; Nie K
    Appl Opt; 2024 Apr; 63(12):3349-3358. PubMed ID: 38856487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.