These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 28486411)

  • 21. Epigenetic biomarkers in colorectal cancer: premises and prospects.
    Zamani M; Hosseini SV; Mokarram P
    Biomarkers; 2018 Mar; 23(2):105-114. PubMed ID: 27788596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetics in breast and prostate cancer.
    Wu Y; Sarkissyan M; Vadgama JV
    Methods Mol Biol; 2015; 1238():425-66. PubMed ID: 25421674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prostate Cancer Epigenetics: From Basic Mechanisms to Clinical Implications.
    Yegnasubramanian S; De Marzo AM; Nelson WG
    Cold Spring Harb Perspect Med; 2019 Apr; 9(4):. PubMed ID: 29959132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional role of microRNAs in prostate cancer and therapeutic opportunities.
    Maugeri-Sacca M; Coppola V; De Maria R; Bonci D
    Crit Rev Oncog; 2013; 18(4):303-15. PubMed ID: 23614617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential.
    Ragavi R; Muthukumaran P; Nandagopal S; Ahirwar DK; Tomo S; Misra S; Guerriero G; Shukla KK
    Urol Oncol; 2023 Aug; 41(8):340-353. PubMed ID: 37032230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications.
    Ceder Y
    Adv Exp Med Biol; 2016; 886():155-170. PubMed ID: 26659491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters.
    Ngollo M; Lebert A; Dagdemir A; Judes G; Karsli-Ceppioglu S; Daures M; Kemeny JL; Penault-Llorca F; Boiteux JP; Bignon YJ; Guy L; Bernard-Gallon D
    BMC Cancer; 2014 Dec; 14():994. PubMed ID: 25535400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micrornas in prostate cancer: an overview.
    Vanacore D; Boccellino M; Rossetti S; Cavaliere C; D'Aniello C; Di Franco R; Romano FJ; Montanari M; La Mantia E; Piscitelli R; Nocerino F; Cappuccio F; Grimaldi G; Izzo A; Castaldo L; Pepe MF; Malzone MG; Iovane G; Ametrano G; Stiuso P; Quagliuolo L; Barberio D; Perdonà S; Muto P; Montella M; Maiolino P; Veneziani BM; Botti G; Caraglia M; Facchini G
    Oncotarget; 2017 Jul; 8(30):50240-50251. PubMed ID: 28445135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms.
    García-Tobilla P; Solórzano SR; Salido-Guadarrama I; González-Covarrubias V; Morales-Montor G; Díaz-Otañez CE; Rodríguez-Dorantes M
    Gene; 2016 Nov; 593(2):292-301. PubMed ID: 27570179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The epigenetic potentials of dietary polyphenols in prostate cancer management.
    Abbas A; Patterson W; Georgel PT
    Biochem Cell Biol; 2013 Dec; 91(6):361-8. PubMed ID: 24219277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. microRNAs and Prostate Cancer.
    Josson S; Chung LW; Gururajan M
    Adv Exp Med Biol; 2015; 889():105-18. PubMed ID: 26658999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer.
    Kumar A; Dhar S; Rimando AM; Lage JM; Lewin JR; Zhang X; Levenson AS
    Ann N Y Acad Sci; 2015 Aug; 1348(1):1-9. PubMed ID: 26214308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery.
    Kumar B; Lupold SE
    Asian J Androl; 2016; 18(4):559-67. PubMed ID: 27056344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells.
    Wang G; Wang Y; Feng W; Wang X; Yang JY; Zhao Y; Wang Y; Liu Y
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S22. PubMed ID: 18831788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methylation of Integrin α4 and E-Cadherin Genes in Human Prostate Cancer.
    Mostafavi-Pour Z; Kianpour S; Dehghani M; Mokarram P; Torabinejad S; Monabati A
    Pathol Oncol Res; 2015 Sep; 21(4):921-7. PubMed ID: 25743258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abnormal DNA methylation, epigenetics, and prostate cancer.
    Nelson WG; Yegnasubramanian S; Agoston AT; Bastian PJ; Lee BH; Nakayama M; De Marzo AM
    Front Biosci; 2007 May; 12():4254-66. PubMed ID: 17485372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene methylation in gastric cancer.
    Qu Y; Dang S; Hou P
    Clin Chim Acta; 2013 Sep; 424():53-65. PubMed ID: 23669186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer.
    Hulf T; Sibbritt T; Wiklund ED; Patterson K; Song JZ; Stirzaker C; Qu W; Nair S; Horvath LG; Armstrong NJ; Kench JG; Sutherland RL; Clark SJ
    Oncogene; 2013 Jun; 32(23):2891-9. PubMed ID: 22869146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression.
    Pickl JM; Tichy D; Kuryshev VY; Tolstov Y; Falkenstein M; Schüler J; Reidenbach D; Hotz-Wagenblatt A; Kristiansen G; Roth W; Hadaschik B; Hohenfellner M; Duensing S; Heckmann D; Sültmann H
    Oncotarget; 2016 Sep; 7(37):59589-59603. PubMed ID: 27449098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone H2A.Z deregulation in prostate cancer. Cause or effect?
    Dryhurst D; Ausió J
    Cancer Metastasis Rev; 2014 Sep; 33(2-3):429-39. PubMed ID: 24398858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.