These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28487046)

  • 41. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
    Bernhardt C; Lee MM; Gonzalez A; Zhang F; Lloyd A; Schiefelbein J
    Development; 2003 Dec; 130(26):6431-9. PubMed ID: 14627722
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche.
    Aida M; Beis D; Heidstra R; Willemsen V; Blilou I; Galinha C; Nussaume L; Noh YS; Amasino R; Scheres B
    Cell; 2004 Oct; 119(1):109-20. PubMed ID: 15454085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computational identification of root hair-specific genes in Arabidopsis.
    Cvrčková F; Bezvoda R; Zárský V
    Plant Signal Behav; 2010 Nov; 5(11):1407-18. PubMed ID: 21051945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise control of plant stem cell activity through parallel regulatory inputs.
    Bennett T; van den Toorn A; Willemsen V; Scheres B
    Development; 2014 Nov; 141(21):4055-64. PubMed ID: 25256342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels.
    Stanley CE; Shrivastava J; Brugman R; Heinzelmann E; van Swaay D; Grossmann G
    New Phytol; 2018 Feb; 217(3):1357-1369. PubMed ID: 29125191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A cell surface arabinogalactan-peptide influences root hair cell fate.
    Borassi C; Gloazzo Dorosz J; Ricardi MM; Carignani Sardoy M; Pol Fachin L; Marzol E; Mangano S; Rodríguez Garcia DR; Martínez Pacheco J; Rondón Guerrero YDC; Velasquez SM; Villavicencio B; Ciancia M; Seifert G; Verli H; Estevez JM
    New Phytol; 2020 Aug; 227(3):732-743. PubMed ID: 32064614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.
    Ding ZJ; Yan JY; Li CX; Li GX; Wu YR; Zheng SJ
    Plant J; 2015 Oct; 84(1):56-69. PubMed ID: 26252246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A gene regulatory network for root hair development.
    Shibata M; Sugimoto K
    J Plant Res; 2019 May; 132(3):301-309. PubMed ID: 30903397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.
    Porco S; Larrieu A; Du Y; Gaudinier A; Goh T; Swarup K; Swarup R; Kuempers B; Bishopp A; Lavenus J; Casimiro I; Hill K; Benkova E; Fukaki H; Brady SM; Scheres B; Péret B; Bennett MJ
    Development; 2016 Sep; 143(18):3340-9. PubMed ID: 27578783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of miR156/SPLs modules in Arabidopsis lateral root development.
    Yu N; Niu QW; Ng KH; Chua NH
    Plant J; 2015 Aug; 83(4):673-85. PubMed ID: 26096676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.
    Ahn SJ; Shin R; Schachtman DP
    Plant Physiol; 2004 Mar; 134(3):1135-45. PubMed ID: 14988478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis.
    Su T; Xu Q; Zhang FC; Chen Y; Li LQ; Wu WH; Chen YF
    Plant Physiol; 2015 Apr; 167(4):1579-91. PubMed ID: 25733771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation.
    Cai XT; Xu P; Zhao PX; Liu R; Yu LH; Xiang CB
    Nat Commun; 2014 Dec; 5():5833. PubMed ID: 25524530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation.
    Ohashi Y; Oka A; Rodrigues-Pousada R; Possenti M; Ruberti I; Morelli G; Aoyama T
    Science; 2003 May; 300(5624):1427-30. PubMed ID: 12775839
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS.
    Herud O; Weijers D; Lau S; Jürgens G
    Plant J; 2016 Jan; 85(2):269-77. PubMed ID: 26714008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity.
    Yoo CM; Quan L; Cannon AE; Wen J; Blancaflor EB
    Plant J; 2012 Mar; 69(6):1064-76. PubMed ID: 22098134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A map of KNAT gene expression in the Arabidopsis root.
    Truernit E; Siemering KR; Hodge S; Grbic V; Haseloff J
    Plant Mol Biol; 2006 Jan; 60(1):1-20. PubMed ID: 16463096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ubiquitin-specific protease 14 (UBP14) is involved in root responses to phosphate deficiency in Arabidopsis.
    Li WF; Perry PJ; Prafulla NN; Schmidt W
    Mol Plant; 2010 Jan; 3(1):212-23. PubMed ID: 19969521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein palmitoylation is critical for the polar growth of root hairs in Arabidopsis.
    Zhang YL; Li E; Feng QN; Zhao XY; Ge FR; Zhang Y; Li S
    BMC Plant Biol; 2015 Feb; 15():50. PubMed ID: 25849075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.