These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28487143)
21. Investigation of lipophilicity of anticancer-active thioquinoline derivatives. Bajda M; Boryczka S; Wietrzyk J; Malawska B Biomed Chromatogr; 2007 Feb; 21(2):123-31. PubMed ID: 17120300 [TBL] [Abstract][Full Text] [Related]
22. Reversed-phase TLC and HPLC retention data in correlation studies with in silico molecular descriptors and druglikeness properties of newly synthesized anticonvulsant succinimide derivatives. Perisic-Janjic N; Kaliszan R; Wiczling P; Milosevic N; Uscumlic G; Banjac N Mol Pharm; 2011 Apr; 8(2):555-63. PubMed ID: 21244097 [TBL] [Abstract][Full Text] [Related]
23. An application of QSRR approach and multiple linear regression method for lipophilicity assessment of flavonoids. Zapadka M; Kaczmarek M; Kupcewicz B; Dekowski P; Walkowiak A; Kokotkiewicz A; Łuczkiewicz M; Buciński A J Pharm Biomed Anal; 2019 Feb; 164():681-689. PubMed ID: 30476861 [TBL] [Abstract][Full Text] [Related]
24. Reversed-phase high performance liquid chromatography (RP-HPLC) characteristics of some 9,10-anthraquinone derivatives using binary acetonitrile-water mixtures as mobile phase. Hemmateenejad B; Shamsipur M; Safavi A; Sharghi H; Amiri AA Talanta; 2008 Oct; 77(1):351-9. PubMed ID: 18804645 [TBL] [Abstract][Full Text] [Related]
25. QSRR models for potential local anaesthetic drugs using high performance liquid chromatography. Durcekova T; Boronova K; Mocak J; Lehotay J; Cizmarik J J Pharm Biomed Anal; 2012 Feb; 59():209-16. PubMed ID: 22033336 [TBL] [Abstract][Full Text] [Related]
26. QSRR modeling of lipophilicity of new spirohydantoin derivatives determined with various TLC systems. Tot K; Lazić A; Djaković Sekulić T Acta Chim Slov; 2024 Apr; 71(2):226-235. PubMed ID: 38919103 [TBL] [Abstract][Full Text] [Related]
27. Chromatographic and Computational Assessment of Lipophilicity of New Anticancer Acetylenequinoline Derivatives. Marciniec K; Boryczka S J Chromatogr Sci; 2017 Oct; 55(9):934-939. PubMed ID: 28651375 [TBL] [Abstract][Full Text] [Related]
28. Chromatographic and computational screening of anisotropic lipophilicity and pharmacokinetics of newly synthesized 1-aryl-3-ethyl-3-methylsuccinimides. Kovačević S; Banjac MK; Podunavac-Kuzmanović S; Milošević N; Ćurčić J; Vulić J; Šeregelj V; Banjac N; Ušćumlić G Comput Biol Chem; 2020 Feb; 84():107161. PubMed ID: 31787580 [TBL] [Abstract][Full Text] [Related]
29. Orthogonal chromatographic descriptors for modelling Caco-2 drug permeability. Deconinck E; Verstraete T; Van Gyseghem E; Vander Heyden Y; Coomans D J Chromatogr Sci; 2012 Mar; 50(3):175-83. PubMed ID: 22337793 [TBL] [Abstract][Full Text] [Related]
30. Study of chromatographic behavior of antibiotic drugs and their metabolites based on quantitative structure-retention relationships with the use of HPLC-DAD. Walczak-Skierska J; Szultka-Młyńska M; Pauter K; Buszewski B J Pharm Biomed Anal; 2020 May; 184():113187. PubMed ID: 32109708 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of lipophilicity of N-arylhydroxamic acids by reversed phase-high performance liquid chromatographic method and self-organizing molecular field analysis. Rajwade RP; Pande R Anal Chim Acta; 2008 Dec; 630(2):205-10. PubMed ID: 19012833 [TBL] [Abstract][Full Text] [Related]
32. A Comparative Study of Chromatographic Behavior and Lipophilicity of Selected Imidazoline Derivatives. Filipic S; Antic A; Vujovic M; Nikolic K; Agbaba D J Chromatogr Sci; 2016 Aug; 54(7):1137-45. PubMed ID: 27406126 [TBL] [Abstract][Full Text] [Related]
33. A comparative study concerning the chromatographic behaviour and lipophilicity of certain natural toxins. Naşcu-Briciu RD; Sârbu C J Sep Sci; 2012 May; 35(9):1059-67. PubMed ID: 22689480 [TBL] [Abstract][Full Text] [Related]
34. In vitro antitumor activity, ADME-Tox and 3D-QSAR of synthesized and selected natural styryl lactones. Vukic VR; Loncar DM; Vukic DV; Jevric LR; Benedekovic G; Francuz J; Kojic V; Karadzic Banjac MZ; Popsavin V Comput Biol Chem; 2019 Dec; 83():107112. PubMed ID: 31480006 [TBL] [Abstract][Full Text] [Related]
35. Application of reversed-phase thin layer chromatography and QSRR modelling for prediction of protein binding of selected β-blockers. Ciura K; Kawczak P; Greber KE; Kapica H; Nowakowska J; Bączek T J Pharm Biomed Anal; 2019 Nov; 176():112767. PubMed ID: 31398505 [TBL] [Abstract][Full Text] [Related]
36. Determination of selectivity differences for basic compounds in gradient reverse phase high performance liquid chromatography under high pH conditions by partial least squares modelling. Fornal E; Borman P; Luscombe C Anal Chim Acta; 2006 Jun; 570(2):267-76. PubMed ID: 17723408 [TBL] [Abstract][Full Text] [Related]
37. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. Janicka M; Sztanke M; Sztanke K J Chromatogr A; 2013 Nov; 1318():92-101. PubMed ID: 24157086 [TBL] [Abstract][Full Text] [Related]
38. Modeling of Anticancer Sulfonamide Derivatives Lipophilicity by Chemometric and Quantitative Structure-Retention Relationships Approaches. Pastewska M; Żołnowska B; Kovačević S; Kapica H; Gromelski M; Stoliński F; Sławiński J; Sawicki W; Ciura K Molecules; 2022 Jun; 27(13):. PubMed ID: 35807212 [TBL] [Abstract][Full Text] [Related]