BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28487235)

  • 1. Transcriptome-wide analysis of microRNAs in Branchiostoma belcheri upon Vibrio parahemolyticus infection.
    Jin P; Li S; Sun L; Lv C; Ma F
    Dev Comp Immunol; 2017 Sep; 74():243-252. PubMed ID: 28487235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection.
    Zhang QL; Zhu QH; Liang MZ; Wang F; Guo J; Deng XY; Chen JY; Wang YJ; Lin LB
    Fish Shellfish Immunol; 2018 May; 76():196-205. PubMed ID: 29510259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analyses of amphioxus microRNAs reveal an immune regulation via miR-92d targeting C3.
    Yang R; Zheng T; Cai X; Yu Y; Yu C; Guo L; Huang S; Zhu W; Zhu R; Yan Q; Ren Z; Chen S; Xu A
    J Immunol; 2013 Feb; 190(4):1491-500. PubMed ID: 23335747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis of microRNAs-mRNAs regulating innate immune response of zebrafish larvae against Vibrio parahaemolyticus infection.
    Ji C; Guo X; Ren J; Zu Y; Li W; Zhang Q
    Fish Shellfish Immunol; 2019 Aug; 91():333-342. PubMed ID: 31129189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcriptional response of microRNAs to the benzo(a)pyrene stress in amphioxus Branchiostoma belcheri.
    Zhang QL; Dong ZX; Xiong Y; Li HW; Guo J; Wang F; Deng XY; Chen JY; Lin LB
    Chemosphere; 2019 Mar; 218():205-210. PubMed ID: 30471501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNA expression changes after lipopolysaccharide treatment in gills of amphioxus Branchiostoma belcheri.
    Liao X; Yang L; Zhang Q; Chen J
    Dev Comp Immunol; 2017 May; 70():39-44. PubMed ID: 28069432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-92b-5p negatively regulates IKK through targeting its ORF region in the innate immune responses of amphioxus (Branchiostoma belcheri).
    Cao Y; Li R; Du Y; Jin N; Fang T; Ma F; Jin P
    Dev Comp Immunol; 2023 Jan; 138():104556. PubMed ID: 36167145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide gene expression analysis of amphioxus (Branchiostoma belcheri) following lipopolysaccharide challenge using strand-specific RNA-seq.
    Zhang QL; Zhu QH; Xie ZQ; Xu B; Wang XQ; Chen JY
    RNA Biol; 2017 Dec; 14(12):1799-1809. PubMed ID: 28837390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring gene expression changes in the amphioxus gill after poly(I:C) challenge using digital expression profiling.
    Zhang QL; Qiu HY; Liang MZ; Luo B; Wang XQ; Chen JY
    Fish Shellfish Immunol; 2017 Nov; 70():57-65. PubMed ID: 28866273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetically conserved TAK1 participates in Branchiostoma belcheri innate immune response to LPS stimulus.
    Cao Y; Jin N; Fan M; Lv C; Song X; Jin P; Ma F
    Fish Shellfish Immunol; 2019 Nov; 94():264-270. PubMed ID: 31499204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-wide analysis of immune-responsive microRNAs against poly (I:C) challenge in
    Zhang QL; Zhu QH; Zhang F; Xu B; Wang XQ; Chen JY
    Oncotarget; 2017 Sep; 8(43):73590-73602. PubMed ID: 29088729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of porcine microRNAs in African swine fever virus infected pigs: a proof-of-concept study.
    Núñez-Hernández F; Pérez LJ; Muñoz M; Vera G; Accensi F; Sánchez A; Rodríguez F; Núñez JI
    Virol J; 2017 Oct; 14(1):198. PubMed ID: 29041944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing.
    Wang F; Jia Y; Wang P; Yang Q; Du Q; Chang Z
    BMC Genomics; 2017 Apr; 18(1):333. PubMed ID: 28454515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the small RNA transcriptomes of miiuy croaker revealed microRNA-mediated regulation of TLR signaling pathway response to Vibrio anguillarum infection.
    Xu G; Han J; Xu T
    Fish Shellfish Immunol; 2016 May; 52():248-57. PubMed ID: 26980609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of MiRNA Transcriptome in Turbot (Scophthalmus maximus L.) Intestine Following Vibrio anguillarum Infection.
    Gao C; Cai X; Fu Q; Yang N; Song L; Su B; Tan F; Liu B; Li C
    Mar Biotechnol (NY); 2019 Aug; 21(4):550-564. PubMed ID: 31111338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of circular RNAs and their altered expression under poly(I:C) challenge in key antiviral immune pathways in amphioxus.
    Zhang QL; Ji XY; Li HW; Guo J; Wang F; Deng XY; Chen JY; Lin LB
    Fish Shellfish Immunol; 2019 Mar; 86():1053-1057. PubMed ID: 30590167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-2013 negatively regulates phylogenetically conserved PIP5K involved in TLR4 mediated immune responses of amphioxus (Branchiostoma belcheri Tsingtaunese).
    Cao Y; Fang T; Du Y; Li R; Fan M; Ma F; Jin P
    Dev Comp Immunol; 2022 Aug; 133():104430. PubMed ID: 35500869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide organization, evolutionary diversification of the COMMD family genes of amphioxus (Branchiostoma belcheri) with the possible role in innate immunity.
    Jin P; Lv C; Peng S; Cai L; Zhu J; Ma F
    Fish Shellfish Immunol; 2018 Jun; 77():31-39. PubMed ID: 29551666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of microRNAs associated with the antiviral immune response of Atlantic cod macrophages.
    Eslamloo K; Inkpen SM; Rise ML; Andreassen R
    Mol Immunol; 2018 Jan; 93():152-161. PubMed ID: 29190475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microRNAs in mud crab Scylla paramamosain under Vibrio parahaemolyticus infection.
    Li S; Zhu S; Li C; Zhang Z; Zhou L; Wang S; Wang S; Zhang Y; Wen X
    PLoS One; 2013; 8(8):e73392. PubMed ID: 24023678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.