These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 28487364)
1. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1. Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364 [TBL] [Abstract][Full Text] [Related]
2. The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8. Shatov VM; Weeks SD; Strelkov SV; Gusev NB Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036999 [TBL] [Abstract][Full Text] [Related]
3. The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain. Heirbaut M; Lermyte F; Martin EM; Beelen S; Verschueren T; Sobott F; Strelkov SV; Weeks SD Arch Biochem Biophys; 2016 Nov; 610():41-50. PubMed ID: 27717639 [TBL] [Abstract][Full Text] [Related]
4. Chaperone activity of human small heat shock protein-GST fusion proteins. Arbach H; Butler C; McMenimen KA Cell Stress Chaperones; 2017 Jul; 22(4):503-515. PubMed ID: 28130664 [TBL] [Abstract][Full Text] [Related]
5. Regulation of small heat-shock proteins by hetero-oligomer formation. Mymrikov EV; Riedl M; Peters C; Weinkauf S; Haslbeck M; Buchner J J Biol Chem; 2020 Jan; 295(1):158-169. PubMed ID: 31767683 [TBL] [Abstract][Full Text] [Related]
6. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity. Mishra S; Chandler SA; Williams D; Claxton DP; Koteiche HA; Stewart PL; Benesch JLP; Mchaourab HS Structure; 2018 Aug; 26(8):1116-1126.e4. PubMed ID: 29983375 [TBL] [Abstract][Full Text] [Related]
7. Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins. Datskevich PN; Mymrikov EV; Gusev NB Biochimie; 2012 Aug; 94(8):1794-804. PubMed ID: 22531625 [TBL] [Abstract][Full Text] [Related]
8. Characterization of human small heat shock protein HSPB1 α-crystallin domain localized mutants associated with hereditary motor neuron diseases. Weeks SD; Muranova LK; Heirbaut M; Beelen S; Strelkov SV; Gusev NB Sci Rep; 2018 Jan; 8(1):688. PubMed ID: 29330367 [TBL] [Abstract][Full Text] [Related]
9. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Bukach OV; Glukhova AE; Seit-Nebi AS; Gusev NB Biochim Biophys Acta; 2009 Mar; 1794(3):486-95. PubMed ID: 19100870 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional structure of α-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. Baranova EV; Weeks SD; Beelen S; Bukach OV; Gusev NB; Strelkov SV J Mol Biol; 2011 Aug; 411(1):110-22. PubMed ID: 21641913 [TBL] [Abstract][Full Text] [Related]
11. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain. McDonald ET; Bortolus M; Koteiche HA; Mchaourab HS Biochemistry; 2012 Feb; 51(6):1257-68. PubMed ID: 22264079 [TBL] [Abstract][Full Text] [Related]
12. Dissecting the functional role of the N-terminal domain of the human small heat shock protein HSPB6. Heirbaut M; Beelen S; Strelkov SV; Weeks SD PLoS One; 2014; 9(8):e105892. PubMed ID: 25157403 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Skouri-Panet F; Michiel M; Férard C; Duprat E; Finet S Biochimie; 2012 Apr; 94(4):975-84. PubMed ID: 22210387 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Mutants of Human Small Heat Shock Protein HspB1 Carrying Replacements in the N-Terminal Domain and Associated with Hereditary Motor Neuron Diseases. Muranova LK; Weeks SD; Strelkov SV; Gusev NB PLoS One; 2015; 10(5):e0126248. PubMed ID: 25965061 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. Aquilina JA; Shrestha S; Morris AM; Ecroyd H J Biol Chem; 2013 May; 288(19):13602-9. PubMed ID: 23532854 [TBL] [Abstract][Full Text] [Related]
16. Heterooligomeric complexes of human small heat shock proteins. Mymrikov EV; Seit-Nebi AS; Gusev NB Cell Stress Chaperones; 2012 Mar; 17(2):157-69. PubMed ID: 22002549 [TBL] [Abstract][Full Text] [Related]
17. Structure and properties of G84R and L99M mutants of human small heat shock protein HspB1 correlating with motor neuropathy. Nefedova VV; Sudnitsyna MV; Strelkov SV; Gusev NB Arch Biochem Biophys; 2013 Oct; 538(1):16-24. PubMed ID: 23948568 [TBL] [Abstract][Full Text] [Related]
18. Quaternary structure of human small heat shock protein HSPB6 (Hsp20) in crowded media modeled by trimethylamine N-oxide (TMAO): Effect of protein phosphorylation. Sluchanko NN; Chebotareva NA; Gusev NB Biochimie; 2015 Jan; 108():68-75. PubMed ID: 25446653 [TBL] [Abstract][Full Text] [Related]
19. Some properties of human small heat shock protein Hsp20 (HspB6). Bukach OV; Seit-Nebi AS; Marston SB; Gusev NB Eur J Biochem; 2004 Jan; 271(2):291-302. PubMed ID: 14717697 [TBL] [Abstract][Full Text] [Related]
20. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. Baughman HER; Clouser AF; Klevit RE; Nath A J Biol Chem; 2018 Feb; 293(8):2687-2700. PubMed ID: 29298892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]