These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28487405)

  • 1. Quantum chemical approaches to [NiFe] hydrogenase.
    Vaissier V; Van Voorhis T
    Essays Biochem; 2017 May; 61(2):293-303. PubMed ID: 28487405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the absolute configuration of the CO and CN- ligands at the active site of a [NiFe] hydrogenase.
    Rippers Y; Horch M; Hildebrandt P; Zebger I; Mroginski MA
    Chemphyschem; 2012 Dec; 13(17):3852-6. PubMed ID: 22945586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2016 Jun; 21(3):383-94. PubMed ID: 26940957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.
    Topin J; Rousset M; Antonczak S; Golebiowski J
    Proteins; 2012 Mar; 80(3):677-82. PubMed ID: 22189859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O₂migration rates in [NiFe] hydrogenases. A joint approach combining free-energy calculations and kinetic modeling.
    Topin J; Diharce J; Fiorucci S; Antonczak S; Golebiowski J
    J Phys Chem B; 2014 Jan; 118(3):676-81. PubMed ID: 24377375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H
    Dong G; Phung QM; Hallaert SD; Pierloot K; Ryde U
    Phys Chem Chem Phys; 2017 Apr; 19(16):10590-10601. PubMed ID: 28397891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid.
    Nguyen NT; Mori Y; Matsumoto T; Yatabe T; Kabe R; Nakai H; Yoon KS; Ogo S
    Chem Commun (Camb); 2014 Nov; 50(87):13385-7. PubMed ID: 25234420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate calculations of geometries and singlet-triplet energy differences for active-site models of [NiFe] hydrogenase.
    Delcey MG; Pierloot K; Phung QM; Vancoillie S; Lindh R; Ryde U
    Phys Chem Chem Phys; 2014 May; 16(17):7927-38. PubMed ID: 24647807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards [NiFe]-hydrogenase biomimetic models that couple H2 binding with functionally relevant intramolecular electron transfers: a quantum chemical study.
    Greco C
    Dalton Trans; 2013 Oct; 42(38):13845-54. PubMed ID: 23921968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase.
    Utesch T; Millo D; Castro MA; Hildebrandt P; Zebger I; Mroginski MA
    Langmuir; 2013 Jan; 29(2):673-82. PubMed ID: 23215250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of hydrogen uptake in [NiFe] hydrogenase: first-principles molecular dynamics investigation of a model compound.
    Furlan S; La Penna G
    J Biol Inorg Chem; 2012 Jan; 17(1):149-64. PubMed ID: 21892688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1.
    Evans RM; Armstrong FA
    Methods Mol Biol; 2014; 1122():73-94. PubMed ID: 24639254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions.
    Shafaat HS; Rüdiger O; Ogata H; Lubitz W
    Biochim Biophys Acta; 2013; 1827(8-9):986-1002. PubMed ID: 23399489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical calculations of [NiFe] hydrogenase.
    Stein M; Lubitz W
    Curr Opin Chem Biol; 2002 Apr; 6(2):243-9. PubMed ID: 12039011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide.
    Lamle SE; Albracht SP; Armstrong FA
    J Am Chem Soc; 2005 May; 127(18):6595-604. PubMed ID: 15869280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer.
    Petrenko A; Stein M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28067774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.
    Kaliakin DS; Zaari RR; Varganov SA
    J Phys Chem A; 2015 Feb; 119(6):1066-73. PubMed ID: 25603170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling of hydrogen conversion at [Fe] hydrogenase active-site models.
    Finkelmann AR; Stiebritz MT; Reiher M
    J Phys Chem B; 2013 May; 117(17):4806-17. PubMed ID: 23560849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic partitioning of M-H2 bonds in [NiFe] hydrogenase--a test case of concurrent binding.
    Vedha SA; Solomon RV; Venuvanalingam P
    Phys Chem Chem Phys; 2014 Jun; 16(22):10698-707. PubMed ID: 24756140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.