These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28487535)

  • 1. Basic protocols in quantum reinforcement learning with superconducting circuits.
    Lamata L
    Sci Rep; 2017 May; 7(1):1609. PubMed ID: 28487535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiqubit and multilevel quantum reinforcement learning with quantum technologies.
    Cárdenas-López FA; Lamata L; Retamal JC; Solano E
    PLoS One; 2018; 13(7):e0200455. PubMed ID: 30024914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum control of bosonic modes with superconducting circuits.
    Ma WL; Puri S; Schoelkopf RJ; Devoret MH; Girvin SM; Jiang L
    Sci Bull (Beijing); 2021 Sep; 66(17):1789-1805. PubMed ID: 36654386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting quantum interference device readout circuit with tunable feedback polarity.
    Wu X; Liu J; Chen W
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37768134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum generative adversarial learning in a superconducting quantum circuit.
    Hu L; Wu SH; Cai W; Ma Y; Mu X; Xu Y; Wang H; Song Y; Deng DL; Zou CL; Sun L
    Sci Adv; 2019 Jan; 5(1):eaav2761. PubMed ID: 30746476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits.
    Lamata L
    Sci Rep; 2017 Mar; 7():43768. PubMed ID: 28256559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional lattice gauge theories with superconducting quantum circuits.
    Marcos D; Widmer P; Rico E; Hafezi M; Rabl P; Wiese UJ; Zoller P
    Ann Phys (N Y); 2014 Dec; 351():634-654. PubMed ID: 25512676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and measurement of three-qubit entanglement in a superconducting circuit.
    Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ
    Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits.
    Córcoles AD; Takita M; Inoue K; Lekuch S; Minev ZK; Chow JM; Gambetta JM
    Phys Rev Lett; 2021 Sep; 127(10):100501. PubMed ID: 34533358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum information processing with superconducting circuits: a review.
    Wendin G
    Rep Prog Phys; 2017 Oct; 80(10):106001. PubMed ID: 28682303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits.
    Ying C; Cheng B; Zhao Y; Huang HL; Zhang YN; Gong M; Wu Y; Wang S; Liang F; Lin J; Xu Y; Deng H; Rong H; Peng CZ; Yung MH; Zhu X; Pan JW
    Phys Rev Lett; 2023 Mar; 130(11):110601. PubMed ID: 37001092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realizing a deep reinforcement learning agent for real-time quantum feedback.
    Reuer K; Landgraf J; Fösel T; O'Sullivan J; Beltrán L; Akin A; Norris GJ; Remm A; Kerschbaum M; Besse JC; Marquardt F; Wallraff A; Eichler C
    Nat Commun; 2023 Nov; 14(1):7138. PubMed ID: 37932251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital quantum Rabi and Dicke models in superconducting circuits.
    Mezzacapo A; Las Heras U; Pedernales JS; DiCarlo L; Solano E; Lamata L
    Sci Rep; 2014 Dec; 4():7482. PubMed ID: 25500735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.
    Joo J; Ginossar E
    Sci Rep; 2016 Jun; 6():26338. PubMed ID: 27245775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superconducting circuits for quantum simulation of dynamical gauge fields.
    Marcos D; Rabl P; Rico E; Zoller P
    Phys Rev Lett; 2013 Sep; 111(11):110504. PubMed ID: 24074064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.
    Wang YP; Wang W; Xue ZY; Yang WL; Hu Y; Wu Y
    Sci Rep; 2015 Feb; 5():8352. PubMed ID: 25666884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental quantum adversarial learning with programmable superconducting qubits.
    Ren W; Li W; Xu S; Wang K; Jiang W; Jin F; Zhu X; Chen J; Song Z; Zhang P; Dong H; Zhang X; Deng J; Gao Y; Zhang C; Wu Y; Zhang B; Guo Q; Li H; Wang Z; Biamonte J; Song C; Deng DL; Wang H
    Nat Comput Sci; 2022 Nov; 2(11):711-717. PubMed ID: 38177368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum bath suppression in a superconducting circuit by immersion cooling.
    Lucas M; Danilov AV; Levitin LV; Jayaraman A; Casey AJ; Faoro L; Tzalenchuk AY; Kubatkin SE; Saunders J; de Graaf SE
    Nat Commun; 2023 Jun; 14(1):3522. PubMed ID: 37316500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.