These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 28487540)
1. Function of second cladding layer in hollow core tube lattice fibers. Huang X; Yoo S; Yong K Sci Rep; 2017 May; 7(1):1618. PubMed ID: 28487540 [TBL] [Abstract][Full Text] [Related]
2. High-sensitivity gas pressure sensor based on a multimode interferometer using hollow-core tube lattice fiber. Li Z; Liao C; Yang Y; Wang Y; Wang Y Opt Lett; 2020 Aug; 45(16):4571-4574. PubMed ID: 32797012 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of embedded-core hollow optical fiber. Guan C; Tian F; Dai Q; Yuan L Opt Express; 2011 Oct; 19(21):20069-78. PubMed ID: 21997017 [TBL] [Abstract][Full Text] [Related]
5. Design of hollow core step-index antiresonant fiber with stepped refractive indices cladding. Deng B; Sima C; Tan H; Zhang X; Lian Z; Chen G; Yu Q; Xu J; Liu D Front Optoelectron; 2021 Dec; 14(4):407-413. PubMed ID: 36637758 [TBL] [Abstract][Full Text] [Related]
6. Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide. Yang L; Dai D; Yang B; Sheng Z; He S Appl Opt; 2009 Feb; 48(4):672-8. PubMed ID: 19183592 [TBL] [Abstract][Full Text] [Related]
7. Bending loss of elliptical-hole core circular-hole holey fibers bent in arbitrary bending directions. Eguchi M; Tsuji Y Appl Opt; 2010 Nov; 49(32):6207-12. PubMed ID: 21068849 [TBL] [Abstract][Full Text] [Related]
8. Higher-Order Mode Suppression in Antiresonant Nodeless Hollow-Core Fibers. Ge A; Meng F; Li Y; Liu B; Hu M Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769944 [TBL] [Abstract][Full Text] [Related]
9. Design and Analysis of a Large Mode Field Area and Low Bending Loss Multi-Cladding Fiber with Comb-Index Core and Gradient-Refractive Index Ring. Zhang Y; Lian Y Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299811 [TBL] [Abstract][Full Text] [Related]
10. Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. Février S; Beaudou B; Viale P Opt Express; 2010 Mar; 18(5):5142-50. PubMed ID: 20389527 [TBL] [Abstract][Full Text] [Related]
11. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes. Vincetti L; Setti V Opt Express; 2012 Jun; 20(13):14350-61. PubMed ID: 22714496 [TBL] [Abstract][Full Text] [Related]
12. Flexible tube lattice fibers for terahertz applications. Setti V; Vincetti L; Argyros A Opt Express; 2013 Feb; 21(3):3388-99. PubMed ID: 23481799 [TBL] [Abstract][Full Text] [Related]
13. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding. Qin Y; Yang H; Jiang P; Gui F; Caiyang W; Cao B Appl Opt; 2018 May; 57(14):3976-3982. PubMed ID: 29791368 [TBL] [Abstract][Full Text] [Related]
15. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943 [TBL] [Abstract][Full Text] [Related]
16. Single-mode hollow-core photonic crystal fiber made from soft glass. Jiang X; Euser TG; Abdolvand A; Babic F; Tani F; Joly NY; Travers JC; Russell PS Opt Express; 2011 Aug; 19(16):15438-44. PubMed ID: 21934907 [TBL] [Abstract][Full Text] [Related]
17. A simple analytical model for confinement loss estimation in hollow-core Tube Lattice Fibers. Vincetti L; Rosa L Opt Express; 2019 Feb; 27(4):5230-5237. PubMed ID: 30876124 [TBL] [Abstract][Full Text] [Related]