These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28487913)

  • 1. Recent developments in protease activity assays and sensors.
    Ong ILH; Yang KL
    Analyst; 2017 May; 142(11):1867-1881. PubMed ID: 28487913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease Substrate-Independent Universal Assay for Monitoring Digestion of Native Unmodified Proteins.
    Vuorinen E; Valtonen S; Hassan N; Mahran R; Habib H; Malakoutikhah M; Kopra K; Härmä H
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-volume multiplexed proteolytic activity assay and inhibitor analysis through a pico-injector array.
    Ng EX; Miller MA; Jing T; Lauffenburger DA; Chen CH
    Lab Chip; 2015 Feb; 15(4):1153-9. PubMed ID: 25553996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of antibody-hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity.
    Wildeboer D; Jiang P; Price RG; Yu S; Jeganathan F; Abuknesha RA
    Talanta; 2010 Apr; 81(1-2):68-75. PubMed ID: 20188889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes.
    Wolf EV; Seybold M; Hadravová R; Strisovsky K; Verhelst SH
    Chembiochem; 2015 Jul; 16(11):1616-21. PubMed ID: 26032951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastinolytic and proteolytic enzymes.
    Kessler E; Safrin M
    Methods Mol Biol; 2014; 1149():135-69. PubMed ID: 24818903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteases: Pivot Points in Functional Proteomics.
    Verhamme IM; Leonard SE; Perkins RC
    Methods Mol Biol; 2019; 1871():313-392. PubMed ID: 30276748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a fluorescence resonance energy transfer peptide library technology for detection of protease contaminants in protein-based raw materials used in diagnostic assays.
    Kapprell HP; Maurer A; Kramer F; Heinrich B; Buenning C; Narvaez A; Kalbacher H; Flad T
    Assay Drug Dev Technol; 2011 Oct; 9(5):549-53. PubMed ID: 21675868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile substrates and probes for IgA1 protease activity.
    Choudary SK; Qiu J; Plaut AG; Kritzer JA
    Chembiochem; 2013 Oct; 14(15):2007-12. PubMed ID: 24038810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors.
    Lotke R; Petersen M; Sauter D
    Viruses; 2024 Feb; 16(3):. PubMed ID: 38543698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of rhomboid proteases.
    Wolf EV; Verhelst SH
    Biochimie; 2016 Mar; 122():38-47. PubMed ID: 26166068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray.
    Kappelhoff R; Puente XS; Wilson CH; Seth A; López-Otín C; Overall CM
    Biochim Biophys Acta Mol Cell Res; 2017 Nov; 1864(11 Pt B):2210-2219. PubMed ID: 28797648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramembrane proteases as drug targets.
    Verhelst SHL
    FEBS J; 2017 May; 284(10):1489-1502. PubMed ID: 27889944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based probes for the study of proteases: recent advances and developments.
    Serim S; Haedke U; Verhelst SH
    ChemMedChem; 2012 Jul; 7(7):1146-59. PubMed ID: 22431376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolytic Systems in Milk: Perspectives on the Evolutionary Function within the Mammary Gland and the Infant.
    Dallas DC; Murray NM; Gan J
    J Mammary Gland Biol Neoplasia; 2015 Dec; 20(3-4):133-47. PubMed ID: 26179272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors.
    Overall CM; Tam EM; Kappelhoff R; Connor A; Ewart T; Morrison CJ; Puente X; López-Otín C; Seth A
    Biol Chem; 2004 Jun; 385(6):493-504. PubMed ID: 15255181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging technologies for protease engineering: New tools to clear out disease.
    Guerrero JL; Daugherty PS; O'Malley MA
    Biotechnol Bioeng; 2017 Jan; 114(1):33-38. PubMed ID: 27497426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling protease activities by dynamic proteomics workflows.
    Klingler D; Hardt M
    Proteomics; 2012 Feb; 12(4-5):587-96. PubMed ID: 22246865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-based profiling of proteases.
    Sanman LE; Bogyo M
    Annu Rev Biochem; 2014; 83():249-73. PubMed ID: 24905783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins.
    Ha M; Bekhit Ael-D; Carne A; Hopkins DL
    J Food Sci; 2013 Feb; 78(2):C170-7. PubMed ID: 23323565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.