BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 28488147)

  • 21. Elucidating biofilm diversity on water lily leaves through 16S rRNA amplicon analysis: Comparison of four DNA extraction kits.
    Janssen K; Low SL; Wang Y; Mu QY; Bierbaum G; Gee CT
    Appl Plant Sci; 2021 Aug; 9(8):e11444. PubMed ID: 34504737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of Perceptions and Cancer Risks of Workers at a Polychlorinated Biphenyl-Contaminated Hotspot in Ethiopia.
    Debela SA; Sheriff I; Debela EA; Sesay MT; Tolcha A; Tengbe MS
    J Health Pollut; 2021 Jun; 11(30):210609. PubMed ID: 34267996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potentiality of Native Ascomycete Strains in Bioremediation of Highly Polychlorinated Biphenyl Contaminated Soils.
    Germain J; Raveton M; Binet MN; Mouhamadou B
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33809790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives.
    Carr CM; Clarke DJ; Dobson ADW
    Front Microbiol; 2020; 11():571265. PubMed ID: 33262744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283.
    Li J; Min J; Wang Y; Chen W; Kong Y; Guo T; Mahto JK; Sylvestre M; Hu X
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology.
    Jaiswal S; Shukla P
    Front Microbiol; 2020; 11():808. PubMed ID: 32508759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of Biodegradation Efficiency of Polychlorinated Biphenyls (PCBs) and Petroleum Hydrocarbons (TPH) in Soil Using Three Individual Bacterial Strains and Their Mixed Culture.
    Steliga T; Wojtowicz K; Kapusta P; Brzeszcz J
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation Mechanism of 4-Chlorobiphenyl by Consortium of Pseudomonas sp. Strain CB-3 and Comamonas sp. Strain CD-2.
    Xing Z; Hu T; Xiang Y; Qi P; Huang X
    Curr Microbiol; 2020 Jan; 77(1):15-23. PubMed ID: 31650227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological enrichment prediction of polychlorinated biphenyls and novel molecular design based on 3D-QSAR/HQSAR associated with molecule docking.
    Yang J; Gu W; Li Y
    Biosci Rep; 2019 May; 39(5):. PubMed ID: 31101726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls.
    Périgon S; Massier M; Germain J; Binet MN; Legay N; Mouhamadou B
    Environ Sci Pollut Res Int; 2019 May; 26(15):14943-14950. PubMed ID: 30919176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes.
    Cervantes-González E; Guevara-García MA; García-Mena J; Ovando-Medina VM
    Environ Monit Assess; 2019 Jan; 191(2):118. PubMed ID: 30706145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology.
    Sadañoski MA; Velázquez JE; Fonseca MI; Zapata PD; Levin LN; Villalba LL
    Mycology; 2018; 9(4):239-249. PubMed ID: 30533250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms.
    Yang R; Zhang G; Li S; Moazeni F; Li Y; Wu Y; Zhang W; Chen T; Liu G; Zhang B; Wu X
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1834-1847. PubMed ID: 30456621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PCBs risk evaluation, environmental protection, and management: 50-year research and counting for elimination by 2028.
    Robertson LW; Weber R; Nakano T; Johansson N
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16269-16276. PubMed ID: 29934860
    [No Abstract]   [Full Text] [Related]  

  • 35. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations.
    Garrido-Sanz D; Manzano J; Martín M; Redondo-Nieto M; Rivilla R
    Front Microbiol; 2018; 9():232. PubMed ID: 29497412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils.
    Sharma JK; Gautam RK; Nanekar SV; Weber R; Singh BK; Singh SK; Juwarkar AA
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16355-16375. PubMed ID: 28488147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phyto/rhizoremediation studies using long-term PCB-contaminated soil.
    Mackova M; Prouzova P; Stursa P; Ryslava E; Uhlik O; Beranova K; Rezek J; Kurzawova V; Demnerova K; Macek T
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):817-29. PubMed ID: 19823887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in the biodegradation of polychlorinated biphenyls.
    Xiang Y; Xing Z; Liu J; Qin W; Huang X
    World J Microbiol Biotechnol; 2020 Aug; 36(10):145. PubMed ID: 32862310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives.
    Passatore L; Rossetti S; Juwarkar AA; Massacci A
    J Hazard Mater; 2014 Aug; 278():189-202. PubMed ID: 24976127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoremediation of polychlorinated biphenyls: new trends and promises.
    Aken BV; Correa PA; Schnoor JL
    Environ Sci Technol; 2010 Apr; 44(8):2767-76. PubMed ID: 20384372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.