BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28488273)

  • 1. Biocatalytic Self-Assembly Cascades.
    Sahoo JK; Pappas CG; Sasselli IR; Abul-Haija YM; Ulijn RV
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6828-6832. PubMed ID: 28488273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence Adaptive Peptide-Polysaccharide Nanostructures by Biocatalytic Self-Assembly.
    Abul-Haija YM; Ulijn RV
    Biomacromolecules; 2015 Nov; 16(11):3473-9. PubMed ID: 26418176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.
    Berdugo C; Nalluri SK; Javid N; Escuder B; Miravet JF; Ulijn RV
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25946-54. PubMed ID: 26540455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuneable Fmoc-Phe-(4-X)-Phe-NH₂ nanostructures by variable electronic substitution.
    Pappas CG; Abul-Haija YM; Flack A; Frederix PW; Ulijn RV
    Chem Commun (Camb); 2014 Sep; 50(73):10630-3. PubMed ID: 25074634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures.
    Kumar M; Ing NL; Narang V; Wijerathne NK; Hochbaum AI; Ulijn RV
    Nat Chem; 2018 Jul; 10(7):696-703. PubMed ID: 29713031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures.
    Pappas CG; Sasselli IR; Ulijn RV
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8119-23. PubMed ID: 26014441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-assisted self-assembly under thermodynamic control.
    Williams RJ; Smith AM; Collins R; Hodson N; Das AK; Ulijn RV
    Nat Nanotechnol; 2009 Jan; 4(1):19-24. PubMed ID: 19119277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytically triggered co-assembly of two-component core/shell nanofibers.
    Abul-Haija YM; Roy S; Frederix PW; Javid N; Jayawarna V; Ulijn RV
    Small; 2014 Mar; 10(5):973-9. PubMed ID: 24027125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-induced control of supramolecular order in biocatalytic hydrogelation.
    Roy S; Javid N; Sefcik J; Halling PJ; Ulijn RV
    Langmuir; 2012 Dec; 28(48):16664-70. PubMed ID: 23116236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.
    Moreira IP; Sasselli IR; Cannon DA; Hughes M; Lamprou DA; Tuttle T; Ulijn RV
    Soft Matter; 2016 Mar; 12(9):2623-31. PubMed ID: 26905042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics.
    Bai S; Debnath S; Gibson K; Schlicht B; Bayne L; Zagnoni M; Ulijn RV
    Small; 2014 Jan; 10(2):285-93. PubMed ID: 23913836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides.
    Nalluri SK; Berdugo C; Javid N; Frederix PW; Ulijn RV
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5882-7. PubMed ID: 24788665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopropulsion by biocatalytic self-assembly.
    Leckie J; Hope A; Hughes M; Debnath S; Fleming S; Wark AW; Ulijn RV; Haw MD
    ACS Nano; 2014 Sep; 8(9):9580-9. PubMed ID: 25162764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning Optoelectronic and Chiroptic Properties of Peptide-Based Materials by Controlling the Pathway Complexity.
    López-Andarias A; López-Andarias J; Atienza C; Chichón FJ; Carrascosa JL; Martín N
    Chemistry; 2018 May; 24(30):7755-7760. PubMed ID: 29537693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
    Liyanage W; Nilsson BL
    Langmuir; 2016 Jan; 32(3):787-99. PubMed ID: 26717444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides.
    Guilbaud JB; Vey E; Boothroyd S; Smith AM; Ulijn RV; Saiani A; Miller AF
    Langmuir; 2010 Jul; 26(13):11297-303. PubMed ID: 20408518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.