These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 28488763)

  • 1. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O
    Xu J; Ma J; Fan Q; Guo S; Dou S
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28488763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I
    Du W; Song Z; Zheng X; Lv Y; Miao L; Gan L; Liu M
    ChemSusChem; 2024 Dec; 17(24):e202400886. PubMed ID: 38899510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries.
    Zhang Y; Liu J
    Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion-Type Cathode Materials for Aqueous Zn Metal Batteries in Nonalkaline Aqueous Electrolytes: Progress, Challenges, and Solutions.
    Li W; Wang D
    Adv Mater; 2023 Jul; ():e2304983. PubMed ID: 37467467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced High-Performance Potassium-Chalcogen (S, Se, Te) Batteries.
    Huang X; Sun J; Wang L; Tong X; Dou SX; Wang ZM
    Small; 2021 Feb; 17(6):e2004369. PubMed ID: 33448135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces.
    Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W
    Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium-Air Batteries with Hybrid Electrolytes.
    He P; Zhang T; Jiang J; Zhou H
    J Phys Chem Lett; 2016 Apr; 7(7):1267-80. PubMed ID: 26977713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O
    Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Aqueous Zinc Ion Batteries based on Conversion Mechanism: Challenges, Strategies, and Prospects.
    Xu H; Yang W; Li M; Liu H; Gong S; Zhao F; Li C; Qi J; Wang H; Peng W; Liu J
    Small; 2024 Jul; 20(27):e2310972. PubMed ID: 38282180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Emerging of Aqueous Zinc-Based Dual Electrolytic Batteries.
    Dai C; Hu L; Jin X; Zhao Y; Qu L
    Small; 2021 Aug; 17(33):e2008043. PubMed ID: 34145760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous Materials Applied in Nonaqueous Li-O
    Wang H; Wang X; Li M; Zheng L; Guan D; Huang X; Xu J; Yu J
    Adv Mater; 2020 Nov; 32(44):e2002559. PubMed ID: 32715511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.