These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 28488774)
41. Functional analysis of the miR-145/Fascin1 cascade in canine oral squamous cell carcinoma. Noguchi S; Tanimoto N; Nishida R; Matsui A Oral Dis; 2023 May; 29(4):1495-1504. PubMed ID: 35103365 [TBL] [Abstract][Full Text] [Related]
42. SLUG is upregulated and induces epithelial mesenchymal transition in canine oral squamous cell carcinoma. Noguchi S; Hirano K; Tanimoto N; Shimada T; Akiyoshi H Vet Comp Oncol; 2022 Mar; 20(1):134-141. PubMed ID: 34310030 [TBL] [Abstract][Full Text] [Related]
43. PD-L1 expression is associated with epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Ock CY; Kim S; Keam B; Kim M; Kim TM; Kim JH; Jeon YK; Lee JS; Kwon SK; Hah JH; Kwon TK; Kim DW; Wu HG; Sung MW; Heo DS Oncotarget; 2016 Mar; 7(13):15901-14. PubMed ID: 26893364 [TBL] [Abstract][Full Text] [Related]
44. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Verneuil L; Leboeuf C; Bousquet G; Brugiere C; Elbouchtaoui M; Plassa LF; Peraldi MN; Lebbé C; Ratajczak P; Janin A Oncotarget; 2015 Dec; 6(39):41497-507. PubMed ID: 26594799 [TBL] [Abstract][Full Text] [Related]
45. Carboxyl-Terminal Modulator Protein Positively Acts as an Oncogenic Driver in Head and Neck Squamous Cell Carcinoma via Regulating Akt phosphorylation. Chang JW; Jung SN; Kim JH; Shim GA; Park HS; Liu L; Kim JM; Park J; Koo BS Sci Rep; 2016 Jun; 6():28503. PubMed ID: 27328758 [TBL] [Abstract][Full Text] [Related]
46. Transcription factors Snail, Slug, Twist, and SIP1 in spindle cell carcinoma of the head and neck. Kojc N; Zidar N; Gale N; Poljak M; Fujs Komlos K; Cardesa A; Höfler H; Becker KF Virchows Arch; 2009 May; 454(5):549-55. PubMed ID: 19381684 [TBL] [Abstract][Full Text] [Related]
48. Upregulation of HOX genes promotes cell migration and proliferation in head and neck squamous cell carcinoma. Aguiar GM; Ramão A; Plaça JR; Simões SC; Scaraboto NV; Freitas-Castro F; Cardoso C; Sousa JF; Silva WA Tumour Biol; 2021; 43(1):263-278. PubMed ID: 34633333 [TBL] [Abstract][Full Text] [Related]
49. [EGCG regulates TGF-β1-induced epithelial mesenchymal transition in squamous cell carcinoma of head and neck]. Pi LM; Liu Y; Yu CY; Cai GM; Hunag DH; Qiu YZ; Tian YQ; Zhang X Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2012 Sep; 47(9):749-52. PubMed ID: 23141445 [TBL] [Abstract][Full Text] [Related]
50. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. Meng FD; Wei JC; Qu K; Wang ZX; Wu QF; Tai MH; Liu HC; Zhang RY; Liu C World J Gastroenterol; 2015 Jan; 21(1):196-213. PubMed ID: 25574092 [TBL] [Abstract][Full Text] [Related]
51. HMGA2-Snai2 axis regulates tumorigenicity and stemness of head and neck squamous cell carcinoma. Li Z; Wu X; Li J; Yu S; Ke X; Yan T; Zhu Y; Cheng J; Yang J Exp Cell Res; 2022 Sep; 418(1):113271. PubMed ID: 35764101 [TBL] [Abstract][Full Text] [Related]
52. Acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) association with lymph node metastasis predicts poor survival in oral squamous cell carcinoma patients. Velmurugan BK; Yeh KT; Lee CH; Lin SH; Chin MC; Chiang SL; Wang ZH; Hua CH; Tsai MH; Chang JG; Ko YC Oncotarget; 2016 Mar; 7(10):10879-90. PubMed ID: 26918356 [TBL] [Abstract][Full Text] [Related]
53. Bioinformatic analysis of PFN2 dysregulation and its prognostic value in head and neck squamous carcinoma. Liu J; Wu Y; Wang Q; Liu X; Liao X; Pan J Future Oncol; 2018 Feb; 14(5):449-459. PubMed ID: 29322815 [TBL] [Abstract][Full Text] [Related]
54. Expression of Claudin-1 in laryngeal squamous cell carcinomas (LSCCs) and its significance. Ouban A Histol Histopathol; 2021 Apr; 36(4):437-446. PubMed ID: 33629735 [TBL] [Abstract][Full Text] [Related]
55. LMX1B mRNA expression and its gene body CpG methylation are valuable prognostic biomarkers for laryngeal squamous cell carcinoma. Fan L; Zhang A; Deng P Biomed Pharmacother; 2019 Sep; 117():109174. PubMed ID: 31387183 [TBL] [Abstract][Full Text] [Related]
56. SOX2 Promotes the Epithelial to Mesenchymal Transition of Esophageal Squamous Cells by Modulating Slug Expression through the Activation of STAT3/HIF-α Signaling. Gao H; Teng C; Huang W; Peng J; Wang C Int J Mol Sci; 2015 Sep; 16(9):21643-57. PubMed ID: 26370982 [TBL] [Abstract][Full Text] [Related]
57. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. Liang J; Liu Z; Wei X; Zhou L; Tang Y; Zhou C; Wu K; Zhang F; Zhang F; Lu Y; Zhu Y BMC Cancer; 2019 Nov; 19(1):1165. PubMed ID: 31783819 [TBL] [Abstract][Full Text] [Related]
58. Differential BMI1, TWIST1, SNAI2 mRNA expression pattern correlation with malignancy type in a spectrum of common cutaneous malignancies: basal cell carcinoma, squamous cell carcinoma, and melanoma. Vand-Rajabpour F; Sadeghipour N; Saee-Rad S; Fathi H; Noormohammadpour P; Yaseri M; Hesari KK; Bagherpour Z; Tabrizi M Clin Transl Oncol; 2017 Apr; 19(4):489-497. PubMed ID: 27718152 [TBL] [Abstract][Full Text] [Related]
59. N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Nguyen PT; Kudo Y; Yoshida M; Kamata N; Ogawa I; Takata T Histol Histopathol; 2011 Feb; 26(2):147-56. PubMed ID: 21154228 [TBL] [Abstract][Full Text] [Related]