BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28488849)

  • 1. Solution Conformations and Dynamics of Substrate-Bound Cytochrome P450 MycG.
    Tietz DR; Podust LM; Sherman DH; Pochapsky TC
    Biochemistry; 2017 May; 56(21):2701-2714. PubMed ID: 28488849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate recognition by the multifunctional cytochrome P450 MycG in mycinamicin hydroxylation and epoxidation reactions.
    Li S; Tietz DR; Rutaganira FU; Kells PM; Anzai Y; Kato F; Pochapsky TC; Sherman DH; Podust LM
    J Biol Chem; 2012 Nov; 287(45):37880-90. PubMed ID: 22952225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of cytochrome P450 enzymes MycCI and MycG in Micromonospora griseorubida, a producer of the macrolide antibiotic mycinamicin.
    Anzai Y; Tsukada S; Sakai A; Masuda R; Harada C; Domeki A; Li S; Kinoshita K; Sherman DH; Kato F
    Antimicrob Agents Chemother; 2012 Jul; 56(7):3648-56. PubMed ID: 22547618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering sequence and selectivity of late-stage C-H oxidation in the MycG iterative cytochrome P450.
    Iizaka Y; Arai R; Takahashi A; Ito M; Sakai M; Fukumoto A; Sherman DH; Anzai Y
    J Ind Microbiol Biotechnol; 2022 Jan; 49(1):. PubMed ID: 34543433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some Surprising Implications of NMR-directed Simulations of Substrate Recognition and Binding by Cytochrome P450
    Asciutto EK; Pochapsky TC
    J Mol Biol; 2018 Apr; 430(9):1295-1310. PubMed ID: 29596916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics.
    Anzai Y; Li S; Chaulagain MR; Kinoshita K; Kato F; Montgomery J; Sherman DH
    Chem Biol; 2008 Sep; 15(9):950-9. PubMed ID: 18804032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational-Based Mechanistic Study and Engineering of Cytochrome P450 MycG for Selective Oxidation of 16-Membered Macrolide Antibiotics.
    Yang S; DeMars MD; Grandner JM; Olson NM; Anzai Y; Sherman DH; Houk KN
    J Am Chem Soc; 2020 Oct; 142(42):17981-17988. PubMed ID: 33030347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Your Crystal Structure Will Not Tell You about Enzyme Function.
    Pochapsky TC; Pochapsky SS
    Acc Chem Res; 2019 May; 52(5):1409-1418. PubMed ID: 31034199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate recognition by two different P450s: Evidence for conserved roles in a common fold.
    Tietz DR; Colthart AM; Sondej Pochapsky S; Pochapsky TC
    Sci Rep; 2017 Oct; 7(1):13581. PubMed ID: 29051575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structural ensembles of substrate-free cytochrome P450(cam).
    Asciutto EK; Young MJ; Madura J; Pochapsky SS; Pochapsky TC
    Biochemistry; 2012 Apr; 51(16):3383-93. PubMed ID: 22468842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the molecular basis for substrate specificity in homologous macrolide biosynthetic cytochromes P450.
    DeMars MD; Samora NL; Yang S; Garcia-Borràs M; Sanders JN; Houk KN; Podust LM; Sherman DH
    J Biol Chem; 2019 Nov; 294(44):15947-15961. PubMed ID: 31488542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational heterogeneity suggests multiple substrate binding modes in CYP106A2.
    Wong NR; Sundar R; Kazanis S; Biswas J; Pochapsky TC
    J Inorg Biochem; 2023 Apr; 241():112129. PubMed ID: 36731370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.
    Zhang W; Liu Y; Yan J; Cao S; Bai F; Yang Y; Huang S; Yao L; Anzai Y; Kato F; Podust LM; Sherman DH; Li S
    J Am Chem Soc; 2014 Mar; 136(9):3640-6. PubMed ID: 24521145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of P450 BM3--examination of substrate-induced conformational change.
    Chang YT; Loew GH
    J Biomol Struct Dyn; 1999 Jun; 16(6):1189-203. PubMed ID: 10447203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies.
    Roccatano D
    J Phys Condens Matter; 2015 Jul; 27(27):273102. PubMed ID: 26061496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimentally restrained molecular dynamics simulations for characterizing the open states of cytochrome P450cam.
    Asciutto EK; Dang M; Pochapsky SS; Madura JD; Pochapsky TC
    Biochemistry; 2011 Mar; 50(10):1664-71. PubMed ID: 21265500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance.
    Colthart AM; Tietz DR; Ni Y; Friedman JL; Dang M; Pochapsky TC
    Sci Rep; 2016 Feb; 6():22035. PubMed ID: 26911901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.