These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28489087)
1. Hydrolysis of cephalexin and meropenem by New Delhi metallo-β-lactamase: the substrate protonation mechanism is drug dependent. Das CK; Nair NN Phys Chem Chem Phys; 2017 May; 19(20):13111-13121. PubMed ID: 28489087 [TBL] [Abstract][Full Text] [Related]
2. New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism. Zheng M; Xu D J Phys Chem B; 2013 Oct; 117(39):11596-607. PubMed ID: 24025144 [TBL] [Abstract][Full Text] [Related]
3. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1. Zhu K; Lu J; Liang Z; Kong X; Ye F; Jin L; Geng H; Chen Y; Zheng M; Jiang H; Li JQ; Luo C J Comput Aided Mol Des; 2013 Mar; 27(3):247-56. PubMed ID: 23456591 [TBL] [Abstract][Full Text] [Related]
4. A molecular dynamics study of the complete binding process of meropenem to New Delhi metallo-β-lactamase 1. Duan J; Hu C; Guo J; Guo L; Sun J; Zhao Z Phys Chem Chem Phys; 2018 Feb; 20(9):6409-6420. PubMed ID: 29442101 [TBL] [Abstract][Full Text] [Related]
5. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the post-hydrolysis reactions. Gatti DL PLoS One; 2012; 7(1):e30079. PubMed ID: 22272276 [TBL] [Abstract][Full Text] [Related]
6. Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1. Zhu K; Lu J; Ye F; Jin L; Kong X; Liang Z; Chen Y; Yu K; Jiang H; Li JQ; Luo C Biochem Biophys Res Commun; 2013 Feb; 431(1):2-7. PubMed ID: 23313491 [TBL] [Abstract][Full Text] [Related]
7. Refined models of New Delhi metallo-beta-lactamase-1 with inhibitors: an QM/MM modeling study. Wang YT; Cheng TL J Biomol Struct Dyn; 2016 Oct; 34(10):2214-23. PubMed ID: 26488313 [TBL] [Abstract][Full Text] [Related]
8. Meropenem and chromacef intermediates observed in IMP-25 metallo-β-lactamase-catalyzed hydrolysis. Oelschlaeger P; Aitha M; Yang H; Kang JS; Zhang AL; Liu EM; Buynak JD; Crowder MW Antimicrob Agents Chemother; 2015 Jul; 59(7):4326-30. PubMed ID: 25918145 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis. Feng H; Liu X; Wang S; Fleming J; Wang DC; Liu W Nat Commun; 2017 Dec; 8(1):2242. PubMed ID: 29269938 [TBL] [Abstract][Full Text] [Related]
10. Inhibitor discovery of full-length New Delhi metallo-β-lactamase-1 (NDM-1). Shen B; Yu Y; Chen H; Cao X; Lao X; Fang Y; Shi Y; Chen J; Zheng H PLoS One; 2013; 8(5):e62955. PubMed ID: 23675445 [TBL] [Abstract][Full Text] [Related]
11. QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin. Song Z; Trozzi F; Palzkill T; Tao P Org Biomol Chem; 2021 Nov; 19(42):9182-9189. PubMed ID: 34647114 [TBL] [Abstract][Full Text] [Related]
12. Non-active site mutation (Q123A) in New Delhi metallo-β-lactamase (NDM-1) enhanced its enzyme activity. Ali A; Azam MW; Khan AU Int J Biol Macromol; 2018 Jun; 112():1272-1277. PubMed ID: 29454953 [TBL] [Abstract][Full Text] [Related]
14. Real-time monitoring of New Delhi metallo-β-lactamase activity in living bacterial cells by 1H NMR spectroscopy. Ma J; McLeod S; MacCormack K; Sriram S; Gao N; Breeze AL; Hu J Angew Chem Int Ed Engl; 2014 Feb; 53(8):2130-3. PubMed ID: 24458501 [TBL] [Abstract][Full Text] [Related]
15. Recent research and development of NDM-1 inhibitors. Wang T; Xu K; Zhao L; Tong R; Xiong L; Shi J Eur J Med Chem; 2021 Nov; 223():113667. PubMed ID: 34225181 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin. Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228 [TBL] [Abstract][Full Text] [Related]
17. The role of conserved residues in the catalytic activity of NDM-1: an approach involving site directed mutagenesis and molecular dynamics. Ali A; Kumar R; Iquebal MA; Jaiswal S; Kumar D; Khan AU Phys Chem Chem Phys; 2019 Aug; 21(32):17821-17835. PubMed ID: 31373340 [TBL] [Abstract][Full Text] [Related]
18. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. Linciano P; Cendron L; Gianquinto E; Spyrakis F; Tondi D ACS Infect Dis; 2019 Jan; 5(1):9-34. PubMed ID: 30421910 [TBL] [Abstract][Full Text] [Related]
19. Structural insight into mode of binding of Meropenem to CTX-M-15 type β-lactamase. Maryam L; Khan AU Int J Biol Macromol; 2017 Mar; 96():78-86. PubMed ID: 27986632 [TBL] [Abstract][Full Text] [Related]
20. High-Throughput Virtual Screening, Molecular Dynamics Simulation, and Enzyme Kinetics Identified ZINC84525623 as a Potential Inhibitor of NDM-1. Rehman MT; AlAjmi MF; Hussain A; Rather GM; Khan MA Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]