These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28489275)

  • 1. Recent drug therapies for corneal neovascularization.
    Liu X; Wang S; Wang X; Liang J; Zhang Y
    Chem Biol Drug Des; 2017 Nov; 90(5):653-664. PubMed ID: 28489275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curcumin nanoparticles inhibit corneal neovascularization.
    Pradhan N; Guha R; Chowdhury S; Nandi S; Konar A; Hazra S
    J Mol Med (Berl); 2015 Oct; 93(10):1095-106. PubMed ID: 25877858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular aspects of corneal neovascularization].
    Krawczyk P; Ambroziak AM; Szaflik JP
    Klin Oczna; 2014; 116(3):210-4. PubMed ID: 25799787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential therapeutic strategy for inhibition of corneal neovascularization with new anti-VEGF agents.
    Hosseini H; Nejabat M
    Med Hypotheses; 2007; 68(4):799-801. PubMed ID: 17107753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Celastrol nanoparticles inhibit corneal neovascularization induced by suturing in rats.
    Li Z; Yao L; Li J; Zhang W; Wu X; Liu Y; Lin M; Su W; Li Y; Liang D
    Int J Nanomedicine; 2012; 7():1163-73. PubMed ID: 22419865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the antiangiogenic activity of modified RGDRGD-endostatin to endostatin delivered by gene transfer in vivo rabbit neovascularization model.
    Ge HY; Xiao N; Yin XL; Fu SB; Ge JY; Shi Y; Liu P
    Mol Vis; 2011; 17():1918-28. PubMed ID: 21850166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization.
    Cakmak H; Gokmen E; Bozkurt G; Kocaturk T; Ergin K
    Cutan Ocul Toxicol; 2018 Jun; 37(2):191-195. PubMed ID: 28874077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic effects of a novel PIGF-1 derived peptide, ZY-1, on corneal neovascularization in vitro and in vivo.
    Lu Y; Zheng Y; Ai J; Xu X
    Discov Med; 2016 May; 21(117):349-61. PubMed ID: 27355331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneal neovascularization and contemporary antiangiogenic therapeutics.
    Hsu CC; Chang HM; Lin TC; Hung KH; Chien KH; Chen SY; Chen SN; Chen YT
    J Chin Med Assoc; 2015 Jun; 78(6):323-30. PubMed ID: 25687646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization.
    Zhang J; Wang S; He Y; Yao B; Zhang Y
    Chem Biol Drug Des; 2020 May; 95(5):485-492. PubMed ID: 31002472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-VEGF therapy (bevacizumab) for sulfur mustard-induced corneal neovascularization associated with delayed limbal stem cell deficiency in rabbits.
    Kadar T; Amir A; Cohen L; Cohen M; Sahar R; Gutman H; Horwitz V; Dachir S
    Curr Eye Res; 2014 May; 39(5):439-50. PubMed ID: 24215293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal (lymph)angiogenesis--from bedside to bench and back: a tribute to Judah Folkman.
    Regenfuss B; Bock F; Parthasarathy A; Cursiefen C
    Lymphat Res Biol; 2008; 6(3-4):191-201. PubMed ID: 19093792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of topical everolimus and sunitinib on corneal neovascularization.
    Çakmak H; Ergin K; Bozkurt G; Kocatürk T; Evliçoğlu GE
    Cutan Ocul Toxicol; 2016; 35(2):97-103. PubMed ID: 25864572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-VEGF Treatment in Corneal Diseases.
    Giannaccare G; Pellegrini M; Bovone C; Spena R; Senni C; Scorcia V; Busin M
    Curr Drug Targets; 2020; 21(12):1159-1180. PubMed ID: 32189591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects.
    Su W; Li Z; Li Y; Lin M; Yao L; Liu Y; He Z; Wu C; Liang D
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9108-15. PubMed ID: 22039247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transgenic mouse models of corneal neovascularization: new perspectives for angiogenesis research.
    Kather JN; Kroll J
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(11):7637-51. PubMed ID: 25425566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-based antiangiogenic applications for corneal neovascularization.
    Liu S; Romano V; Steger B; Kaye SB; Hamill KJ; Willoughby CE
    Surv Ophthalmol; 2018; 63(2):193-213. PubMed ID: 29080632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacologic uncoupling of angiogenesis and inflammation during initiation of pathological corneal neovascularization.
    Sivak JM; Ostriker AC; Woolfenden A; Demirs J; Cepeda R; Long D; Anderson K; Jaffee B
    J Biol Chem; 2011 Dec; 286(52):44965-75. PubMed ID: 22072717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-angiogenic effect of KR-31831 on corneal and choroidal neovascularization in rat models.
    Kim IT; Park HY; Choi JS; Joo CK
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):3111-9. PubMed ID: 22491414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization.
    Yang L; Wang Y; Zhou Q; Chen P; Wang Y; Wang Y; Liu T; Xie L
    Mol Vis; 2009 Sep; 15():1951-61. PubMed ID: 19784394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.