These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28489389)

  • 1. Stabilization of Foam Lamella Using Novel Surface-Grafted Nanocellulose-Based Nanofluids.
    Wei B; Li H; Li Q; Wen Y; Sun L; Wei P; Pu W; Li Y
    Langmuir; 2017 May; 33(21):5127-5139. PubMed ID: 28489389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of certain physical-chemical features of oil recovery by an optimized alkali-surfactant-foam (ASF) system.
    Hosseini-Nasab SM; Zitha PLJ
    Colloid Polym Sci; 2017; 295(10):1873-1886. PubMed ID: 28989223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.
    Xiao S; Zeng Y; Vavra ED; He P; Puerto M; Hirasaki GJ; Biswal SL
    Langmuir; 2018 Jan; 34(3):739-749. PubMed ID: 29045144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Behaviors and Mechanisms of Air-Foam Flooding at High Pressure and Reservoir Temperature via Microfluidic Experiments.
    Li D; Xin G; Ren S
    ACS Omega; 2022 Oct; 7(41):36503-36509. PubMed ID: 36278066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.
    Farajzadeh R; Andrianov A; Krastev R; Hirasaki GJ; Rossen WR
    Adv Colloid Interface Sci; 2012 Nov; 183-184():1-13. PubMed ID: 22921844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.
    Hosseini-Nasab SM; Zitha PLJ
    Energy Fuels; 2017 Oct; 31(10):10525-10534. PubMed ID: 29093612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Evaluation of Surfactant Nanocapsules for Chemical Enhanced Oil Recovery (EOR) Applications.
    Cortés FB; Lozano M; Santamaria O; Betancur Marquez S; Zapata K; Ospina N; Franco CA
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29937532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of foam flow in a 3D printed porous medium in the presence of oil.
    Osei-Bonsu K; Grassia P; Shokri N
    J Colloid Interface Sci; 2017 Mar; 490():850-858. PubMed ID: 28002773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow Behavior and Mechanism Insights into Nanoparticle-Surfactant-Stabilized Nitrogen Foam for Enhanced Oil Recovery in the Mature Waterflooding Reservoir.
    Lu J
    ACS Omega; 2024 Aug; 9(34):36825-36834. PubMed ID: 39220527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foam stability of temperature-resistant hydrophobic silica particles in porous media.
    Qiao S; Yu H; Wang Y; Zhan L; Liu Q; Fan Z; Sun A
    Front Chem; 2022; 10():960067. PubMed ID: 36118316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring in-situ capillary pressure of a flowing foam system in porous media.
    Vavra E; Puerto M; Bai C; Ma K; Mateen K; Biswal L; Hirasaki G
    J Colloid Interface Sci; 2022 Sep; 621():321-330. PubMed ID: 35462174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid Foam Stabilized by a CO
    Wei P; Guo K; Xie Y; Huang X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):37134-37148. PubMed ID: 35917120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-level mechanics of foam generation and coalescence in the presence of oil.
    Almajid MM; Kovscek AR
    Adv Colloid Interface Sci; 2016 Jul; 233():65-82. PubMed ID: 26548502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore- and Core-Scale Insights of Nanoparticle-Stabilized Foam for CO
    Alcorn ZP; Føyen T; Gauteplass J; Benali B; Soyke A; Fernø M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the microcharacter of ultrastable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant with existence of magnesium ion.
    Li C; Li Y; Yuan R; Lv W
    Langmuir; 2013 May; 29(18):5418-27. PubMed ID: 23586737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foam flow in a model porous medium: II. The effect of trapped gas.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3497-3503. PubMed ID: 29707727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
    Osei-Bonsu K; Shokri N; Grassia P
    J Colloid Interface Sci; 2016 Jan; 462():288-96. PubMed ID: 26473278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the Effect of Nanoparticle-Stabilized Foam on EOR: Nitrogen Foam and Methane Foam.
    Xu Z; Li B; Zhao H; He L; Liu Z; Chen D; Yang H; Li Z
    ACS Omega; 2020 Aug; 5(30):19092-19103. PubMed ID: 32775911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and swelling of cross-linked nanocellulose foams.
    Hossain L; Raghuwanshi VS; Tanner J; Wu CM; Kleinerman O; Cohen Y; Garnier G
    J Colloid Interface Sci; 2020 May; 568():234-244. PubMed ID: 32092552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating foam lamella stability and surface dilational rheology.
    Koelsch P; Motschmann H
    Langmuir; 2005 Jul; 21(14):6265-9. PubMed ID: 15982029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.