These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28489410)

  • 1. Strategically Designing a Pumpless Microfluidic Device on an "Inert" Polypropylene Substrate with Potential Application in Biosensing and Diagnostics.
    Shirani E; Razmjou A; Tavassoli H; Landarani-Isfahani A; Rezaei S; Abbasi Kajani A; Asadnia M; Hou J; Ebrahimi Warkiani M
    Langmuir; 2017 Jun; 33(22):5565-5576. PubMed ID: 28489410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms.
    Ghosh A; Ganguly R; Schutzius TM; Megaridis CM
    Lab Chip; 2014 May; 14(9):1538-50. PubMed ID: 24622962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications.
    Sinha Mahapatra P; Ganguly R; Ghosh A; Chatterjee S; Lowrey S; Sommers AD; Megaridis CM
    Chem Rev; 2022 Nov; 122(22):16752-16801. PubMed ID: 36195098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-graphene-based open fluidics for pumpless, small-scale fluid transport
    Hall LS; Hwang D; Chen B; Van Belle B; Johnson ZT; Hondred JA; Gomes CL; Bartlett MD; Claussen JC
    Nanoscale Horiz; 2021 Jan; 6(1):24-32. PubMed ID: 33165477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.
    Dak P; Ebrahimi A; Swaminathan V; Duarte-Guevara C; Bashir R; Alam MA
    Biosensors (Basel); 2016 Apr; 6(2):14. PubMed ID: 27089377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis.
    Esfandyarpour R; DiDonato MJ; Yang Y; Durmus NG; Harris JS; Davis RW
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1306-E1315. PubMed ID: 28167769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.
    Papadakis G; Friedt JM; Eck M; Rabus D; Jobst G; Gizeli E
    Biomed Microdevices; 2017 Sep; 19(3):16. PubMed ID: 28357652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of biosensors into digital microfluidics: Impact of hydrophilic surface of biosensors on droplet manipulation.
    Samiei E; Luka GS; Najjaran H; Hoorfar M
    Biosens Bioelectron; 2016 Jul; 81():480-486. PubMed ID: 27016626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, Self-driven Liquid Mixing on Open-Surface Microfluidic Platforms.
    Morrissette JM; Mahapatra PS; Ghosh A; Ganguly R; Megaridis CM
    Sci Rep; 2017 May; 7(1):1800. PubMed ID: 28496152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics.
    Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B
    Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation-based analysis of fluid flow and electrokinetic phenomena in microfluidic devices.
    Krishnamoorthy S; Bedekar AS; Feng J; Sundaram S
    Clin Lab Med; 2007 Mar; 27(1):41-59. PubMed ID: 17416301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superamphiphilic TiO
    Li N; Xu Z; Zheng S; Dai H; Wang L; Tian Y; Dong Z; Jiang L
    Adv Mater; 2021 Jun; 33(25):e2003559. PubMed ID: 33984172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.